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Question

Given an elliptic curve E over a finite field k of cardinality q, does
there exist a finite extension l of k such that the number of points
on E over l is maximal with respect to the Hasse bound?

4 / 34



Finite fields

A field k is finite if |k | is finite.

The characteristic of k is the (unique) prime p such that

Z/pZ −→ k , n̄ 7−→
n∑

i=1

1

is an injective ring homomorphism.

q = |k| = pd .

Up to isomorphism, there is a unique field with q elements,

denote by Fq,
aq = a for all a ∈ Fq,
(a + b)p = ap + bp for all a, b ∈ Fq.

If k is a subfield of l , then

l is an extension of k denoted by l/k ,
the degree [l : k] := dimk (l).
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Algebraic curves

Let k be a field.

An (algebraic) variety C over k is – loosely speaking – an
irreducible topological space such that locally C is the set of
zeros in k̄n of

F1(x1, . . . , xn) = 0, . . . , Fr (x1, . . . , xn) = 0,

where Fi ∈ k[X1, . . . ,Xn].

If l/k , then

C (l) := {(x1, . . . , xn) ∈ ln : Fi (x1, . . . , xn) = 0 for all i}.

A curve over k is a 1-dimensional variety over k ,

for example: x2 + y2 = 1.
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Hasse-Weil-Serre bound

Theorem

If C is a non-singular of genus g over Fq, then

q + 1− gb2√qc ≤ |C (Fq)| ≤ q + 1 + gb2√qc.

A curve C of genus g over Fq is maximal if

|C (Fq)| = q + 1 + gb2√qc.

Consider

Nq(g) := max {|C (Fq)| : C a curve of genus g over Fq}.

A typical construction of a curve with many points is:

1 Let D be a curve (of lower genus) with many points.
2 Consider curves C with a morphism C → D.
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Elliptic curves

An elliptic curve (E , O) over k is a non-singular curve of
genus 1 over k and a point O ∈ E (k):

The zero set of a (short) Weierstrass equation (char (k) 6= 2, 3)

E
(
k̄
)

=
{

(x , y) ∈ k̄2 : y2 = x3 + ax + b
}
∪ {O}

with a, b ∈ k such that 4a3 + 27b2 6= 0.

E (k) is a group with identity O.
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Example

Consider F3 =
{

0̄, 1̄, 2̄
}

and the elliptic curve E over F3

y2 = x3 − x .

Since a3 = a for all a ∈ F3,

E (F3) =
{
O,
(
0̄, 0̄
)
,
(
1̄, 0̄
)
,
(
2̄, 0̄
)}
.

Hence |E (F3)| = 4 < 7 = 3 + 1 +
⌊
2
√

3
⌋
.

Consider F9
∼= F3(i) = {a + bi : a, b ∈ F3} with i2 + 1̄ = 0̄.

Since (a + bi)3 = a3 + b3i3 = a− bi for all a, b ∈ F3,

E (F9) = {O,
(
0̄, 0̄
)
,
(
1̄, 0̄
)
,
(
2̄, 0̄
)
,(

i ,±
(
1̄− i

))
,
(
1̄ + i ,±

(
1̄− i

))
,
(
2̄ + i ,±

(
1̄− i

))
,(

−i ,±
(
1̄ + i

))
,
(
1̄− i ,±

(
1̄ + i

))
,
(
2̄− i ,±

(
1̄ + i

))
}.

Hence |E (F9)| = 16 = 9 + 1 +
⌊
2
√

9
⌋
.
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Question

Given an elliptic curve E over a finite field k of cardinality q, does
there exist a finite extension l of k such that the number of points
on E over l is maximal with respect to the Hasse bound?
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Eigenvalues of Frobenius

Theorem

Let E be an elliptic curve over Fq. Then

|E (Fqn)| = qn + 1− an, an = αn + ᾱn

for all n ∈ Z>0, where α ∈ C is a root of

X 2 − a1X + q.

Choose α such that Im (α) ≥ 0.

|α| =
√
q.

|an| ≤ 2
√
qn.

A recurrence relation

an+1 = α(αn + ᾱn) + ᾱ(αn + ᾱn)− qᾱn−1 − qαn−1

= a1an − qan−1.
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Isogenies

Let E and E ′ be elliptic curves over k.

An isogeny φ : E → E ′ over k is a morphism over k such that
φ(O) = O ′.

The curves are isogeneous over k if there is a non-constant
isogeny E → E ′ over k .

This is an equivalence relation.
This is a weaker version of an isomorphism.

If k = Fq, then

E and E ′ are isogeneous over Fq ⇐⇒ |E (Fq)| =
∣∣E ′(Fq)

∣∣.
Theorem (Waterhouse)

An isogeny class of elliptic curves over Fq corresponds to an
integer a1 such that |a1| ≤ 2

√
q and some additional conditions.
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Reformulated question

Question

Given a prime power q and an a1 ∈ Z such that |a1| ≤ 2
√
q, does

there exist a n ∈ Z>0 such that −an =
⌊
2
√
qn
⌋
.

Recall that

α ∈ C is a root of X 2 − a1X + q,

an = αn + ᾱn.

Define β = α√
q .
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An important lemma

Lemma

−an = b2√qnc ⇐⇒ |βn + 1| ≤ 1
4
√
qn
.

Proof.

Since |an| ≤ 2
√
qn,

−an = b2√qnc ⇐⇒ 0 ≤ an + 2
√
qn < 1⇐⇒ |an + 2

√
qn| < 1.

Use

an + 2
√
qn = αn + ᾱn + 2

√
qn = ᾱn

(
α2n

√
q2n

+ 1 + 2
αn

√
qn

)
= ᾱn(βn + 1)2.
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Supersingular elliptic curves

An elliptic curve E over Fq is supersingular if gcd (a1, q) 6= 1.

The pair q, a1 is supersingular if β is a root of unity, that is
βm = 1 for some non-zero m ∈ Z.

Proposition

If the pair q, a1 is supersingular, then −an =
⌊
2
√
qn
⌋

for some
n ∈ Z>0 if and only if

a1 ∈
{

0,
√
q,±

√
2q,±

√
3q,−2

√
q
}
.

Moreover if such an n exists, then there exist infinitely many.

The case q a square was already solved by Peter Doetjes.
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Proof

First step:

β is a root of X 2 − a1√
qX + 1 and therefore also of

X 4 +

(
2− a21

q

)
X 2 + 1.

[Q(β) : Q] ∈ {1, 2, 4}.
If β is a root of unity of order n, then

[Q(β) : Q] = φ(n),

evaluate the above polynomials in ζn = e
2π
n i to get a1.

If a1 ∈
{

0,±√q,±
√

2q,±
√

3q,±2
√
q
}

, then one of the
above polynomials is a (product of) cyclotomic polynomials.
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d n a1 Φn

1 1 2
√
q X − 1

2 −2
√
q X + 1

2 3 −√q X 2 + X + 1
4 0 X 2 + 1
6

√
q X 2 − X + 1

4 5 X 4 + X 3 + X 2 + X + 1
8 ±

√
2q X 4 + 1

10 X 4 − X 3 + X 2 − X + 1
12 ±

√
3q X 4 − X 2 + 1
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Last step:

If the order n of β is even, then for n′ = n
2

0 =
∣∣∣βn′ + 1

∣∣∣ < 1

4
√
qn

′ .

Hence −an′ =
⌊

2
√
qn

′
⌋

.

If the order n of β is odd, that is n = 1 or n = 3, then∣∣∣βn′ + 1
∣∣∣ ≥ 1 >

1

4
√
qn

′

for all n′ ∈ Z>0. Hence −an′ 6=
⌊

2
√
qn

′
⌋

.
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Ordinary elliptic curves

An elliptic curve E is ordinary if gcd (a1, q) = 1.

The pair q, a1 is ordinary if β is not a root of unity.

Proposition

If the pair q, a1 is ordinary, then −an =
⌊
2
√
qn
⌋

for at most finitely
many n ∈ Z>0. Furthermore q is not a square and n is odd.

In this case, if −an =
⌊
2
√
qn
⌋
, then

0 < |βn + 1| < 1
4
√
qn
.
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Linear forms in logarithms

A linear form in logarithms is

m1 log (γ1) + . . .+ mr log (γr )

with mi ∈ Z and γi non-zero algebraic numbers (over Q).

Theorem (Baker)

If log (γ1), . . . , log (γr ) are linear independent over Q, then

log |m1 log (γ1) + . . .+ mr log (γr )| > −C log max {|m1|, . . . , |mr |}

with C a constant depending on γi .
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Corollary

If γ is an algebraic number such that |γ| = 1 and γ is not a root of
unity, then

log |log (−γn)| > −(32d)400 log (4) log log (4) log (h) log (n)

for all integers n ≥ 4, where d = [Q(γ) : Q] and h ∈ Z≥4 is an
upper bound on the height of γ.

Sketch of proof.

For some k ∈ Z

log (−γn) = log (−1)+n log (γ)+2πki = (2k + 1) log (−1)+n log (γ)

Since γ is not a root of unity, |log (γ)| < π and |log (−γn)| < π.

|2k + 1|π = |log (−γn)− n log (γ)|
≤ |log (−γn)|+ n|log (γ)| < (n + 1)π.
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Upper bound on the degree n
Let q, a1 be ordinary and −an =

⌊
2
√
qn
⌋

for some n ∈ Z≥4.

Recall that

0 < |βn + 1| < 1
4
√
qn
.

Observe that for all |z | < c < 1

|log (1− z)| =

∣∣∣∣∣
∞∑
k=1

zk

k

∣∣∣∣∣ <
∞∑
k=1

ck =
c

1− c
.

Take z = βn + 1 and c = 1
4
√
qn . Then

log |log (−βn)| < − log ( 4
√
qn − 1)

Baker’s Theorem gives

−C̃ log (2q) log (n) < log |log (−βn)|

with C̃ = 22800 log (4) log log (4).
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Convergents

Recall that a1 = α + ᾱ and α = e iθ with θ ∈ [0, π].

Proposition (Doetjes)

If −an =
⌊
2
√
qn
⌋

for some n ∈ Z>0, then∣∣∣∣ θπ − m

n

∣∣∣∣ < 1

π

√
48

48− π2
1

n 4
√
qn

with m an odd integer.

If −an =
⌊
2
√
qn
⌋

for some n ≥ 3 and either q ≥ 3 or n ≥ 13,

then m
n is a convergent of θ

π for some odd m.
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Computer experiment

Compute ordinary triples q, a1, n with n > 1 such that

−an = b2√qnc.

Case n = 3 and q < 103:

q a1 q a1 q a1 q a1 q a1 q a1
2 1 37 6 103 10 229 15 479 22 787 28
3 2 47 7 167 13 257 16 487 22 839 29
5 2 61 8 173 13 293 17 571 24 967 31
8 3 67 8 193 14 359 19 577 24

11 3 79 9 197 14 397 20 673 26
17 4 83 9 199 14 401 20 677 26
23 5 97 10 223 15 439 21 727 27
27 5 101 10 227 15 443 21 733 27
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Case n = 5 and q < 106:

q a1 q a1
2 -1 8807 -58
3 -1 10391 -63

11 -2 10399 165
23 -3 22159 -92
31 9 122147 -216

128 -7 192271 -271
317 -11 842321 1485

2851 -33

Case n = 7 and q < 106:

q = 5, a1 = 1.

Case n = 13 and q < 106:

q = 2, a1 = 1.
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Upper bound on the cardinality q

Proposition

Let n ∈ Z≥13. There exists a qn ∈ Z such that if −an =
⌊
2
√
qn
⌋

for some pair q, a1, then q ≤ qn or the pair q, a1 is supersingular.

Combined with the upper bound from linear forms in
logarithms this implies that

Theorem

There exist only finitely many ordinary pairs q, a1 such that
−an =

⌊
2
√
qn
⌋

for some n ≥ 13.
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Proof of proposition
Assume that the pair q, a1 is ordinary and −an =

⌊
2
√
qn
⌋
.

Recall that q not a square and n odd and

0 < |βn + 1| < 1
4
√
qn
.

Observe that βn + 1 =
∏n

i=1

(
β − ζ2i+1

2n

)
.

There is a cn > 0 (depending only on n) and a m such that

|βn + 1| ≥ cn|β − ζm2n| ≥ cn

∣∣∣∣ a1
2
√
q
− cos

(mπ
n

)∣∣∣∣.
The Subspace Theorem implies: For all ε > 0 there exists a
c ′0 > 0 depending on cos

(
mπ
n

)
and ε such that∣∣∣∣ a1

2
√
q
− cos

(mπ
n

)∣∣∣∣ ≥ c ′0
(4q)3+ε

.

Take ε = 1
8 . Then c < q3+ε−

n
4 for some c > 0.
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Maximal over cubic extensions

Theorem

For infinitely many primes q = p there exists an a1 ∈ Z (with
|a1| ≤ 2

√
q) such that −a3 =

⌊
2
√
q3
⌋
.

Such a pair q, a1 is ordinary.

Using an+1 = a1an − qan−1 and a0 = 2

a3 = a31 − 3qa1.

Hence

−a3 =
⌊

2
√
q3
⌋
⇐⇒ 0 ≤ a31 − 3qa1 + 2

√
q3 < 1.
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−2
√
q −√q 0

√
q 2

√
q

2
√
q3

4
√
q3

Proposition (Soomro)

If q = a21 + b with integers a1, b such that a1 ≥ 2 and |b| ≤ √a1,
then −a3 =

⌊
2
√
q3
⌋
.
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Proof of theorem
Consider

S1 =
{

(a, b) ∈ Z2 : p = a2 + b prime, 0 < a, |b| ≤
√
a
}

and define S2 = {(a, b) ∈ S1 : b square}, which corresponds to

S3 =
{

(a, c) ∈ Z2 : p = a2 + c2 prime, 0 < a, 0 ≤ c ≤ 4
√
a
}
.

Define for θ > 0

S4(θ) =
{

(a, c) ∈ Z2 : p = a2 + c2 prime, 0 < a, 0 ≤ c < pθ
}

and write S4(θ) = S5(θ) ∪ S6(θ) with

S5(θ) =
{

(a, c) ∈ S4(θ) : a ≥ p4θ
}

and
S6(θ) =

{
(a, c) ∈ S4(θ) : a < p4θ

}
.

Observe that S5(θ) ⊂ S3.
If θ < 1

8 , then S6(θ) is finite, because p = a2 + c2 < p8θ +p2θ.
The set S4(0.119) is infinite by Harman and Lewis (2001).
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