Elliptic curves maximal over finite extensions

Ane Anema

Rijksuniversiteit Groningen
29 November 2016

The arithmetic of maximal curves, the Hesse pencil and the Mestre curve

Ane Anema

Outline

1 Motivation

2 Reformulate question

3 Supersingular case

4 Ordinary case

5 Maximal over cubic extensions

Question

Given an elliptic curve E over a finite field k of cardinality q, does there exist a finite extension $/$ of k such that the number of points on E over I is maximal with respect to the Hasse bound?

Finite fields

- A field k is finite if $|k|$ is finite.

■ The characteristic of k is the (unique) prime p such that

$$
\mathbb{Z} / p \mathbb{Z} \longrightarrow k, \quad \bar{n} \longmapsto \sum_{i=1}^{n} 1
$$

is an injective ring homomorphism.

- $q=|k|=p^{d}$.

■ Up to isomorphism, there is a unique field with q elements,

- denote by \mathbb{F}_{q},
- $a^{q}=a$ for all $a \in \mathbb{F}_{q}$,
- $(a+b)^{p}=a^{p}+b^{p}$ for all $a, b \in \mathbb{F}_{q}$.

■ If k is a subfield of l, then

- l is an extension of k denoted by I / k,
- the degree $[I: k]:=\operatorname{dim}_{k}(I)$.

Algebraic curves

- Let k be a field.
- An (algebraic) variety C over k is - loosely speaking - an irreducible topological space such that locally C is the set of zeros in \bar{k}^{n} of

$$
F_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \quad \ldots, \quad F_{r}\left(x_{1}, \ldots, x_{n}\right)=0
$$

where $F_{i} \in k\left[X_{1}, \ldots, X_{n}\right]$.

- If I / k, then

$$
C(I):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in I^{n}: F_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \text { for all } i\right\} .
$$

- A curve over k is a 1 -dimensional variety over k,
- for example: $x^{2}+y^{2}=1$.

Hasse-Weil-Serre bound

Theorem

If C is a non-singular of genus g over \mathbb{F}_{q}, then

$$
q+1-g\lfloor 2 \sqrt{q}\rfloor \leq\left|C\left(\mathbb{F}_{q}\right)\right| \leq q+1+g\lfloor 2 \sqrt{q}\rfloor .
$$

- A curve C of genus g over \mathbb{F}_{q} is maximal if

$$
\left|C\left(\mathbb{F}_{q}\right)\right|=q+1+g\lfloor 2 \sqrt{q}\rfloor .
$$

- Consider

$$
N_{q}(g):=\max \left\{\left|C\left(\mathbb{F}_{q}\right)\right|: C \text { a curve of genus } g \text { over } \mathbb{F}_{q}\right\}
$$

- A typical construction of a curve with many points is:

1 Let D be a curve (of lower genus) with many points.
2 Consider curves C with a morphism $C \rightarrow D$.

Elliptic curves

- An elliptic curve (E, O) over k is a non-singular curve of genus 1 over k and a point $O \in E(k)$:
- The zero set of a (short) Weierstrass equation ($\operatorname{char}(k) \neq 2,3)$

$$
E(\bar{k})=\left\{(x, y) \in \bar{k}^{2}: y^{2}=x^{3}+a x+b\right\} \cup\{O\}
$$

with $a, b \in k$ such that $4 a^{3}+27 b^{2} \neq 0$.

- $E(k)$ is a group with identity O.

Example

- Consider $\mathbb{F}_{3}=\{\overline{0}, \overline{1}, \overline{2}\}$ and the elliptic curve E over \mathbb{F}_{3}

$$
y^{2}=x^{3}-x
$$

- Since $a^{3}=a$ for all $a \in \mathbb{F}_{3}$,

$$
E\left(\mathbb{F}_{3}\right)=\{O,(\overline{0}, \overline{0}),(\overline{1}, \overline{0}),(\overline{2}, \overline{0})\}
$$

- Hence $\left|E\left(\mathbb{F}_{3}\right)\right|=4<7=3+1+\lfloor 2 \sqrt{3}\rfloor$.

■ Consider $\mathbb{F}_{9} \cong \mathbb{F}_{3}(i)=\left\{a+b i: a, b \in \mathbb{F}_{3}\right\}$ with $i^{2}+\overline{1}=\overline{0}$.

- Since $(a+b i)^{3}=a^{3}+b^{3} i^{3}=a-b i$ for all $a, b \in \mathbb{F}_{3}$,

$$
\begin{aligned}
E\left(\mathbb{F}_{9}\right)=\{ & O,(\overline{0}, \overline{0}),(\overline{1}, \overline{0}),(\overline{2}, \overline{0}), \\
& (i, \pm(\overline{1}-i)),(\overline{1}+i, \pm(\overline{1}-i)),(\overline{2}+i, \pm(\overline{1}-i)), \\
& (-i, \pm(\overline{1}+i)),(\overline{1}-i, \pm(\overline{1}+i)),(\overline{2}-i, \pm(\overline{1}+i))\} .
\end{aligned}
$$

- Hence $\left|E\left(\mathbb{F}_{9}\right)\right|=16=9+1+\lfloor 2 \sqrt{9}\rfloor$.

Outline

1 Motivation

2 Reformulate question

3 Supersingular case

4 Ordinary case

5 Maximal over cubic extensions

Question

Given an elliptic curve E over a finite field k of cardinality q, does there exist a finite extension $/$ of k such that the number of points on E over I is maximal with respect to the Hasse bound?

Eigenvalues of Frobenius

Theorem

Let E be an elliptic curve over \mathbb{F}_{q}. Then

$$
\left|E\left(\mathbb{F}_{q^{n}}\right)\right|=q^{n}+1-a_{n}, \quad a_{n}=\alpha^{n}+\bar{\alpha}^{n}
$$

for all $n \in \mathbb{Z}_{>0}$, where $\alpha \in \mathbb{C}$ is a root of

$$
X^{2}-a_{1} X+q
$$

- Choose α such that $\operatorname{Im}(\alpha) \geq 0$.
- $|\alpha|=\sqrt{q}$.
- $\left|a_{n}\right| \leq 2 \sqrt{q}^{n}$.
- A recurrence relation

$$
\begin{aligned}
a_{n+1} & =\alpha\left(\alpha^{n}+\bar{\alpha}^{n}\right)+\bar{\alpha}\left(\alpha^{n}+\bar{\alpha}^{n}\right)-q \bar{\alpha}^{n-1}-q \alpha^{n-1} \\
& =a_{1} a_{n}-q a_{n-1}
\end{aligned}
$$

Isogenies

Let E and E^{\prime} be elliptic curves over k.

- An isogeny $\phi: E \rightarrow E^{\prime}$ over k is a morphism over k such that $\phi(O)=O^{\prime}$.
- The curves are isogeneous over k if there is a non-constant isogeny $E \rightarrow E^{\prime}$ over k.
- This is an equivalence relation.
- This is a weaker version of an isomorphism.
- If $k=\mathbb{F}_{q}$, then
E and E^{\prime} are isogeneous over $\mathbb{F}_{q} \Longleftrightarrow\left|E\left(\mathbb{F}_{q}\right)\right|=\left|E^{\prime}\left(\mathbb{F}_{q}\right)\right|$.

Theorem (Waterhouse)

An isogeny class of elliptic curves over \mathbb{F}_{q} corresponds to an integer a_{1} such that $\left|a_{1}\right| \leq 2 \sqrt{q}$ and some additional conditions.

Reformulated question

Question

Given a prime power q and an $a_{1} \in \mathbb{Z}$ such that $\left|a_{1}\right| \leq 2 \sqrt{q}$, does there exist a $n \in \mathbb{Z}_{>0}$ such that $-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor$.

Recall that

- $\alpha \in \mathbb{C}$ is a root of $X^{2}-a_{1} X+q$,
- $a_{n}=\alpha^{n}+\bar{\alpha}^{n}$.

Define $\beta=\frac{\alpha}{\sqrt{q}}$.

An important lemma

Lemma

$$
-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor \quad \Longleftrightarrow \quad\left|\beta^{n}+1\right| \leq \frac{1}{\sqrt[4]{q^{n}}} .
$$

Proof.

Since $\left|a_{n}\right| \leq 2 \sqrt{q}^{n}$,

$$
-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor \Longleftrightarrow 0 \leq a_{n}+2 \sqrt{q}^{n}<1 \Longleftrightarrow\left|a_{n}+2 \sqrt{q}^{n}\right|<1 .
$$

Use

$$
\begin{aligned}
a_{n}+2 \sqrt{q}^{n} & =\alpha^{n}+\bar{\alpha}^{n}+2 \sqrt{q}^{n}=\bar{\alpha}^{n}\left(\frac{\alpha^{2 n}}{\sqrt{q^{2 n}}}+1+2 \frac{\alpha^{n}}{\sqrt{q^{n}}}\right) \\
& =\bar{\alpha}^{n}\left(\beta^{n}+1\right)^{2} .
\end{aligned}
$$

Outline

1 Motivation

2 Reformulate question

3 Supersingular case

4 Ordinary case

5 Maximal over cubic extensions

Supersingular elliptic curves

- An elliptic curve E over \mathbb{F}_{q} is supersingular if $\operatorname{gcd}\left(a_{1}, q\right) \neq 1$.
- The pair q, a_{1} is supersingular if β is a root of unity, that is $\beta^{m}=1$ for some non-zero $m \in \mathbb{Z}$.

Proposition

If the pair q, a_{1} is supersingular, then $-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor$ for some $n \in \mathbb{Z}_{>0}$ if and only if

$$
a_{1} \in\{0, \sqrt{q}, \pm \sqrt{2 q}, \pm \sqrt{3 q},-2 \sqrt{q}\} .
$$

Moreover if such an n exists, then there exist infinitely many.

- The case q a square was already solved by Peter Doetjes.

Proof

First step:

- β is a root of $X^{2}-\frac{a_{1}}{\sqrt{q}} X+1$ and therefore also of

$$
X^{4}+\left(2-\frac{a_{1}^{2}}{q}\right) X^{2}+1
$$

■ $[\mathbb{Q}(\beta): \mathbb{Q}] \in\{1,2,4\}$.
■ If β is a root of unity of order n, then

- $[\mathbb{Q}(\beta): \mathbb{Q}]=\phi(n)$,
- evaluate the above polynomials in $\zeta_{n}=e^{\frac{2 \pi}{n} i}$ to get a_{1}.

■ If $a_{1} \in\{0, \pm \sqrt{q}, \pm \sqrt{2 q}, \pm \sqrt{3 q}, \pm 2 \sqrt{q}\}$, then one of the above polynomials is a (product of) cyclotomic polynomials.

d	n	a_{1}	Φ_{n}
1	1	$2 \sqrt{q}$	$X-1$
	2	$-2 \sqrt{q}$	$X+1$
2	3	$-\sqrt{q}$	$X^{2}+X+1$
	4	0	$X^{2}+1$
	6	\sqrt{q}	$X^{2}-X+1$
4	5		$X^{4}+X^{3}+X^{2}+X+1$
	8	$\pm \sqrt{2 q}$	$X^{4}+1$
	10		$X^{4}-X^{3}+X^{2}-X+1$
	12	$\pm \sqrt{3 q}$	$X^{4}-X^{2}+1$

Last step:

■ If the order n of β is even, then for $n^{\prime}=\frac{n}{2}$

$$
0=\left|\beta^{n^{\prime}}+1\right|<\frac{1}{\sqrt[4]{q^{n^{\prime}}}}
$$

Hence $-a_{n^{\prime}}=\left\lfloor 2 \sqrt{q}^{n^{\prime}}\right\rfloor$.

- If the order n of β is odd, that is $n=1$ or $n=3$, then

$$
\left|\beta^{n^{\prime}}+1\right| \geq 1>\frac{1}{\sqrt[4]{q^{n^{\prime}}}}
$$

for all $n^{\prime} \in \mathbb{Z}_{>0}$. Hence $-a_{n^{\prime}} \neq\left\lfloor 2 \sqrt{q^{\prime}}{ }^{n^{\prime}}\right\rfloor$.

Outline

1 Motivation

2 Reformulate question

3 Supersingular case

4 Ordinary case

5 Maximal over cubic extensions

Ordinary elliptic curves

- An elliptic curve E is ordinary if $\operatorname{gcd}\left(a_{1}, q\right)=1$.
- The pair q, a_{1} is ordinary if β is not a root of unity.

Proposition

If the pair q, a_{1} is ordinary, then $-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor$ for at most finitely many $n \in \mathbb{Z}_{>0}$. Furthermore q is not a square and n is odd.

- In this case, if $-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor$, then

$$
0<\left|\beta^{n}+1\right|<\frac{1}{\sqrt[4]{q}^{n}}
$$

Linear forms in logarithms

- A linear form in logarithms is

$$
m_{1} \log \left(\gamma_{1}\right)+\ldots+m_{r} \log \left(\gamma_{r}\right)
$$

with $m_{i} \in \mathbb{Z}$ and γ_{i} non-zero algebraic numbers (over \mathbb{Q}).

Theorem (Baker)

If $\log \left(\gamma_{1}\right), \ldots, \log \left(\gamma_{r}\right)$ are linear independent over \mathbb{Q}, then
$\log \left|m_{1} \log \left(\gamma_{1}\right)+\ldots+m_{r} \log \left(\gamma_{r}\right)\right|>-C \log \max \left\{\left|m_{1}\right|, \ldots,\left|m_{r}\right|\right\}$
with C a constant depending on γ_{i}.

Corollary

If γ is an algebraic number such that $|\gamma|=1$ and γ is not a root of unity, then

$$
\log \left|\log \left(-\gamma^{n}\right)\right|>-(32 d)^{400} \log (4) \log \log (4) \log (h) \log (n)
$$

for all integers $n \geq 4$, where $d=[\mathbb{Q}(\gamma): \mathbb{Q}]$ and $h \in \mathbb{Z}_{\geq 4}$ is an upper bound on the height of γ.

Sketch of proof.

For some $k \in \mathbb{Z}$
$\log \left(-\gamma^{n}\right)=\log (-1)+n \log (\gamma)+2 \pi k i=(2 k+1) \log (-1)+n \log (\gamma)$
Since γ is not a root of unity, $|\log (\gamma)|<\pi$ and $\left|\log \left(-\gamma^{n}\right)\right|<\pi$.

$$
\begin{aligned}
|2 k+1| \pi & =\left|\log \left(-\gamma^{n}\right)-n \log (\gamma)\right| \\
& \leq\left|\log \left(-\gamma^{n}\right)\right|+n|\log (\gamma)|<(n+1) \pi
\end{aligned}
$$

Upper bound on the degree n

Let q, a_{1} be ordinary and $-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor$ for some $n \in \mathbb{Z}_{\geq 4}$.

- Recall that

$$
0<\left|\beta^{n}+1\right|<\frac{1}{\sqrt[4]{q}^{n}}
$$

■ Observe that for all $|z|<c<1$

$$
|\log (1-z)|=\left|\sum_{k=1}^{\infty} \frac{z^{k}}{k}\right|<\sum_{k=1}^{\infty} c^{k}=\frac{c}{1-c}
$$

- Take $z=\beta^{n}+1$ and $c=\frac{1}{\sqrt[4]{q^{n}}}$. Then

$$
\log \left|\log \left(-\beta^{n}\right)\right|<-\log \left(\sqrt[4]{q^{n}}-1\right)
$$

■ Baker's Theorem gives

$$
-\tilde{C} \log (2 q) \log (n)<\log \left|\log \left(-\beta^{n}\right)\right|
$$

with $\tilde{C}=2^{2800} \log (4) \log \log (4)$.

Convergents

- Recall that $a_{1}=\alpha+\bar{\alpha}$ and $\alpha=e^{i \theta}$ with $\theta \in[0, \pi]$.

Proposition (Doetjes)

If $-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor$ for some $n \in \mathbb{Z}_{>0}$, then

$$
\left|\frac{\theta}{\pi}-\frac{m}{n}\right|<\frac{1}{\pi} \sqrt{\frac{48}{48-\pi^{2}}} \frac{1}{n \sqrt[4]{q^{n}}}
$$

with m an odd integer.

- If $-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor$ for some $n \geq 3$ and either $q \geq 3$ or $n \geq 13$, then $\frac{m}{n}$ is a convergent of $\frac{\theta}{\pi}$ for some odd m.

Computer experiment

Compute ordinary triples q, a_{1}, n with $n>1$ such that

$$
-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor .
$$

- Case $n=3$ and $q<10^{3}$:

q	a_{1}										
2	1	37	6	103	10	229	15	479	22	787	28
3	2	47	7	167	13	257	16	487	22	839	29
5	2	61	8	173	13	293	17	571	24	967	31
8	3	67	8	193	14	359	19	577	24		
11	3	79	9	197	14	397	20	673	26		
17	4	83	9	199	14	401	20	677	26		
23	5	97	10	223	15	439	21	727	27		
27	5	101	10	227	15	443	21	733	27		

- Case $n=5$ and $q<10^{6}$:

q	a_{1}	q	a_{1}
2	-1	8807	-58
3	-1	10391	-63
11	-2	10399	165
23	-3	22159	-92
31	9	122147	-216
128	-7	192271	-271
317	-11	842321	1485
2851	-33		

- Case $n=7$ and $q<10^{6}$:

$$
q=5, \quad a_{1}=1
$$

- Case $n=13$ and $q<10^{6}$:

$$
q=2, \quad a_{1}=1
$$

Upper bound on the cardinality q

Proposition

Let $n \in \mathbb{Z}_{\geq 13}$. There exists a $q_{n} \in \mathbb{Z}$ such that if $-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor$ for some pair q, a_{1}, then $q \leq q_{n}$ or the pair q, a_{1} is supersingular.

- Combined with the upper bound from linear forms in logarithms this implies that

Theorem

There exist only finitely many ordinary pairs q, a_{1} such that $-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor$ for some $n \geq 13$.

Proof of proposition

Assume that the pair q, a_{1} is ordinary and $-a_{n}=\left\lfloor 2 \sqrt{q}^{n}\right\rfloor$.

- Recall that q not a square and n odd and

$$
0<\left|\beta^{n}+1\right|<\frac{1}{\sqrt[4]{q}^{n}}
$$

- Observe that $\beta^{n}+1=\prod_{i=1}^{n}\left(\beta-\zeta_{2 n}^{2 i+1}\right)$.
- There is a $c_{n}>0$ (depending only on n) and a m such that

$$
\left|\beta^{n}+1\right| \geq c_{n}\left|\beta-\zeta_{2 n}^{m}\right| \geq c_{n}\left|\frac{a_{1}}{2 \sqrt{q}}-\cos \left(\frac{m \pi}{n}\right)\right|
$$

- The Subspace Theorem implies: For all $\varepsilon>0$ there exists a $c_{0}^{\prime}>0$ depending on $\cos \left(\frac{m \pi}{n}\right)$ and ε such that

$$
\left|\frac{a_{1}}{2 \sqrt{q}}-\cos \left(\frac{m \pi}{n}\right)\right| \geq \frac{c_{0}^{\prime}}{(4 q)^{3+\varepsilon}} .
$$

- Take $\varepsilon=\frac{1}{8}$. Then $c<q^{3+\varepsilon-\frac{n}{4}}$ for some $c>0$.

Outline

1 Motivation

2 Reformulate question

3 Supersingular case

4 Ordinary case

5 Maximal over cubic extensions

Maximal over cubic extensions

Theorem

For infinitely many primes $q=p$ there exists an $a_{1} \in \mathbb{Z}$ (with $\left.\left|a_{1}\right| \leq 2 \sqrt{q}\right)$ such that $-a_{3}=\left\lfloor 2 \sqrt{q}^{3}\right\rfloor$.

- Such a pair q, a_{1} is ordinary.

■ Using $a_{n+1}=a_{1} a_{n}-q a_{n-1}$ and $a_{0}=2$

$$
a_{3}=a_{1}^{3}-3 q a_{1} .
$$

- Hence

$$
-a_{3}=\left\lfloor 2 \sqrt{q}^{3}\right\rfloor \quad \Longleftrightarrow \quad 0 \leq a_{1}^{3}-3 q a_{1}+2 \sqrt{q}^{3}<1
$$

Proposition (Soomro)

If $q=a_{1}^{2}+b$ with integers a_{1}, b such that $a_{1} \geq 2$ and $|b| \leq \sqrt{a_{1}}$, then $-a_{3}=\left\lfloor 2 \sqrt{q}^{3}\right\rfloor$.

Proof of theorem

- Consider

$$
S_{1}=\left\{(a, b) \in \mathbb{Z}^{2}: p=a^{2}+b \text { prime }, 0<a,|b| \leq \sqrt{a}\right\}
$$

and define $S_{2}=\left\{(a, b) \in S_{1}: b\right.$ square $\}$, which corresponds to

$$
S_{3}=\left\{(a, c) \in \mathbb{Z}^{2}: p=a^{2}+c^{2} \text { prime, } 0<a, 0 \leq c \leq \sqrt[4]{a}\right\} .
$$

- Define for $\theta>0$
$S_{4}(\theta)=\left\{(a, c) \in \mathbb{Z}^{2}: p=a^{2}+c^{2}\right.$ prime, $\left.0<a, 0 \leq c<p^{\theta}\right\}$
and write $S_{4}(\theta)=S_{5}(\theta) \cup S_{6}(\theta)$ with

$$
S_{5}(\theta)=\left\{(a, c) \in S_{4}(\theta): a \geq p^{4 \theta}\right\}
$$

and

$$
S_{6}(\theta)=\left\{(a, c) \in S_{4}(\theta): a<p^{4 \theta}\right\} .
$$

- Observe that $S_{5}(\theta) \subset S_{3}$.
- If $\theta<\frac{1}{8}$, then $S_{6}(\theta)$ is finite, because $p=a^{2}+c^{2}<p^{8 \theta}+p^{2 \theta}$.
- The set $S_{4}(0.119)$ is infinite by Harman and Lewis (2001).

