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Motivation

m Consider the following curves over Q

C : y?* = (x> + 60x + 20)(60x + 20)(60x — 60)
Ei:y?=x3—-39x — 70
E» : y? = x3 — 52500x — 5537500.

m Are Jac(C) and E; x E; isogeneous over Q7
m Possible methods to answer this question:
C uniformization, see Van Wamelen (1999);

Qp uniformization, see Kadziela (2007);
Faltings method.

)

30



Outline

Faltings method
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History

Introduced by Faltings (1983) to prove Shafarevich
Conjecture.

Made effective by Serre for certain elliptic curves.

Extended to more general 2-adic 2-dimensional
representations by Livné (1987) and by Chénevert (2008).

Generalized to /-adic d-dimensional representations by Grenié
(2007).
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Isogeny Theorem

Theorem (Faltings)

If A1, Ay are abelian varieties of dimension d over a number field
K, then:

m the action of Gk on T;A; ® Qy is semi-simple for i = 1,2,

m there is an isomorphism

Homy (Al, A2) R Ly —> HomZZ[GK] (TgAl, TZA2).
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The method - a version in between Chénevert and Grenié
Theorem
m G a profinite group,
m p;i: G — GL4(Zy) a continuous representation for i = 1,2,

m e € Z such that d < (¢,

m > C G such that the characteristic polynomials of p1(h) and
p2(h) are equal for all h € ¥, and

m N C G an open normal subgroup with p;(N) a {-subgroup.

If
f:{gh”g_l:geG,hEZ,nEZ}

maps surjectively to G /N, then tr (p1) = tr (p2).
Note: N™ is defined as the closure of (n™ : n e N) in G.

Corollary

If the p; are also semi-simple, then they are isomorphic.
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Example

Eq, E5 elliptic curves over a number field K.

S the set of primes of bad reduction of E; and primes above 2.

Galois representations

Gk P:—> Aut (Tin) = GL2(Z2)

T
J, _ -

Gal (Ks/K).

Apply method to pf, ph:
md=2{({=2ande=1.
m G = Gal(Ks/K) and N = Gal (Ks/K(E1[2], E2[2]))-
m G/N? = Gal(L/K) with L the maximal exponent 2 extension
of K(E1[2], E2[2]) in Ks.
m Cebotarev density theorem.



Deviation group

m Consider the Z-linear extension of p = (p1, p2)
D Ze[G] — Md(Zg) ©® Md(ZZ).

m Denote M =im p.
m The deviation map ¢ is

§: Zy[G] L M —— M/IM
and the deviation group is §(G) C (M/¢M)*.

Proposition

Let ¥ C G be such that for every conjugacy class C of §(G) there
exists a g € ¥ with 6(g) € C. Then

tr(p1) #tr(p2) = tr(p)ls # tr(p2)ls-
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Proof.
m Suppose tr(p1) # tr(p2). Then
m=max{n€Z:tr(p1) =tr(p2) mod ("} < oco.

Choose g € G such that tr(p1(g)) # tr (p2(g)) mod ¢m+1.
Take h € ¥ such that d(h) = §(aga™!) for some a € G.
Consider the R-module homomorphism v : M — R/¢m+1

(A,B) — tr (A) —tr(B) mod ¢™1,

Since /M C ker1), we get ¥ : M/¢M — R/¢m+1,

= Now
Yop(h) =Pod(h) =Pod(aga ') =pop(aga ) =op(g).
= So tr (p1(h)) # tr (pa(h)).
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m Since §(G) C (M/¢M)" and

M M/eM

|

Md(Zg) D Md(Zg) —_— Md(Fg) é; Md(Fg)

commutes, we obtain §(G) — p(G).

Example (In general 6(G) — p(G) not injective)

There exist non-isogeneous elliptic curves Eq, E; over Q with all
2-torsion rational. In this case p(Gp) is trivial, but §(Gg) is not!

Proposition

The order of 5(G) is less than (29",
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Residue kernel

m Suppose that N = ker p, then
1—0(N) —46(G) — p(G) — 1
with 5(G) in principal well-known and 6(N) a ¢-group.

Proposition

Let e € Z such that d < ¢¢ and N such that p(N) a (-group. If
n € N and the characteristic polynomials of p1(n) and pa(n) are
equal, then §(n) has order dividing (€.
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Proof.

Denote the characteristic polynomial of p;i(n) by x; € Zg[x].

Cayley-Hamilton Theorem: xi(pi(n)) = 0.
Jordan Normal Form of pj(n): xi = (x — 1)? mod ¢.
Since x1 = x2 and x; = (x — 1)¥ — ¢F for some F € Z[x],

(p(n) = 1) = ¢F(p(n)) € M.

Hence 6(n)" = 1.
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Recall

Theorem

m G a profinite group,
m p;: G — GL4(Zy) a continuous representation for i = 1,2,
m e € 7Z such that d < /¢,

m ¥ C G such that the characteristic polynomials of pi(h) and
p2(h) are equal for all h € ¥, and

m N C G an open normal subgroup with p;(N) a ¢-subgroup.

If
f:{gh”g_l:geG,hEZ,nEZ}

maps surjectively to G /N, then tr (p1) = tr (p2).
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Proof of the theorem
Recall that ¥ = {gh*g ™' : g € G,he ¥, k € Z}.

m Given h € ¥, the characteristic polynomials of p;(h) are equal.

Claim: N C kerd.
m Consider

N——2 5 5(N)

| |

N/NE - — 5% 5(N)/5(N).

Let i € 6(N)/6(N)* and n e N a lift of .

nN® = hN® with h € ¥, because ¥ /N = G/N*.
h € N since N C N.

8(h) € 8(N)[ee].

Proposition

Let H be a finite (-group. If for all g € H there exists a h € H[(€]
such that gH* = hH*, then H has exponent dividing (€.
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So
G—2%6(G)

l X

e
-5

G/N*

Suppose that tr (p1) # tr(p2).
Let C C 6(G) be a conjugacy class.
Choose a g € G such that 6(g) € C.
There exists a h € ¥ such that gN*° = hN®. So §(h) € C.

Hence tr (p1)|5 # tr (p1)ls-
Contradiction.
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Remarks

m Zy can be replaced by Ok, with [K; : Q] < oo.

m Is G/N* finite? If the pro-¢ quotient of N is finitely
generated, then: yes. (Restricted Burnside Problem)

m Grenié uses powerful pro-p groups to bound the length of the
lower p-central series of 6(N):

P1(6(N)) = P2(8(N)) > P3(6(N)) > ...

with P1(G) = G and Pi;1(G) = Pi(G)?[Pi(G), G].

16
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Outline

Galois extensions of exponent 4
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Preliminaries

m Let K be a number field and S a finite set of places.

m A Galois extension L/K has exponent 4 if Gal (L/K) is of
exponent 4.

m If L1, L5/K are exponent 4 Galois extensions, then so is
Ly Ly/K.

m The maximal exponent 4 extension Ks 4 of K unramified
outside S is the compositum of all finite exponent 4 Galois
extensions of K unramified outside S.
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Results
Let K=Q and S = {2, 3, 00}.
m [Qs4:Q] = 215,
m Qs 4 is the splitting field of fif,f3 with
i = x84+ 4x0 +axt -2,
fr = x10 — 4x 4 4x1? 1 4x10 — 4x® — 20x* 4 4x2 4 25,
fy = x1® — 20x'2 + 84x® + 96x°® — 128x* — 96x° — 8.

m For all of the 272 conjugacy classes C of

Gs4 = Gal(Qs,4/Q)

computed the smallest prime p such that Fr, € C.
m The 5 largest such p are

862417,926977,1484737,1501009, 2977153.
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Maximal 2-extensions

m Let Ks be the maximal 2-extension of K unramified outside S.

m Galois cohomology provides a (partial) pro-2 presentation of
és = Gal (RS/K>
m Use Koch (2002) and Wingberg (1991):
B K=Qand S={2,3,00}
Gs = (s3, t3, too = £3[t5 1,551 ] L £2,).
B K=Qand S={2,0}
és = <53, too - t§o>

m K =Q(v10) and S = {p2, p3a, P36, c0r }

A L 42 -1 -1 2 -1 -1 2
GS - <SP3a? tP3a7 Sp3b> tP3b7 foo tP3a [tma ’ 5P3a } ? tPSb [tPBb ’ SP3b] ’ t00>‘

n [@{2,00} : Q] = 0.
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Exponent four quotients

K ) |Gs 4| 2-class conjugacy classes

Q 2,00 20 4 13

Q 2,3,00 215 5 272
Q(Vv10) P2, 00 237 7 1 832 960
Q(V/10)  p2,p3asb3p, 00 254 7

Q 2,3,5,00 <2 <5

m Compute Gs4 from @5 with the

p-quotient algorithm in Magma. n |B(n2, 4) ZC;‘SS
m A naive way to obtain Qs 4 is as a ; 2212 5
tower of exponent 2 extensions. 3 69 7
m For K=Qand S ={2,3,00}: 4 2422 10
5 221 13

Q-2 QCoa) B 12 Qs 4.
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Transitive groups

Suppose that Qs 4 is the splitting field of a monic, irreducible
f € [x] of degree d.

m The action of Gs4 on the roots {a1,..., a4} of fisa
transitive group.

m The isomorphism class of a transitive group has a label dTn
Wlth ne Z>0.

m Qs4 = Q(ar)™.
m Q(o) corresponds to a subgroup H C Gs 4 of index d with
trivial Core (Gs 4, H).



Case S = {2,00}:
m [Gs4 @ H] = 8 and transitive group with label 8T30.
m Tables of number fields by Jones and Roberts (2014):

x84+ 4x® +4x* — 2.

m The polynomial of degree 64 in Grenié (2007) defines the
same field.

Case S = {2,3,0}:
m [Gsa: H] =128
m Using the normal lattice of Gs 4 and careful elimination:

QS,4 = Q{z,oo},4 Ly L™

u [L,,Q] = 16.
m Gal (L1"°/Q) has label 16T915 or 16T926.
m Gal (L2"°/Q) has label 16T1468.
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Frobenius elements
Use Dokchitser and Dokchitser (2013) to compute for every
conjugacy class C C Gs 4 a prime p > 5 such that Fr, € C:

m Recall that Qs 4 is the splitting field of f = f;f,f3 and
consider Gs 4 C Sqeg -

m Choose h = x3 — 3x.

m Define for every conjugacy class C of Gs4

deg f
FCZH<X—Zha, )EZ[X]

oceC

m In this case the ¢ are coprime. So

deg f
ceC=T¢ (Z h(a,-)a(a,-)) =0.

i=1
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Factor f over Q,.

Irreducible factors correspond to cycles of Fry,.

Compute roots of f in K,/Qp unramified of degree 4.

Use Hensel Lemma to compute Fr, («;).

Evaluate in the I'¢'s.

25 /30



Outline

Abelian surfaces
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Theorem

Let Ay and A, be abelian varieties of dimension two over Q. If
m A; and Ay have good reduction at every prime p # 2,3,
m the degree of Q(A1[2], A2[2])/Q is a power of two, and

m for every prime p in 'a known finite list’ the characteristic
polynomials of Frobenius for A1 and Ay are equal,

then Ay and A, are isogeneous over Q.

Theorem

The number of isogeny classes of two-dimensional abelian varieties
A over Q with good reduction at every prime p # 2,3 and the
degree of Q(A[2])/Q a power of two is at most 2.2 - 101783,
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m There are no number fields of degree 3, 5, 7 and 9-15
unramified outside 2, see Jones (2010).

Theorem (Grenié)

Let A1 and As be abelian varieties of dimension two over Q. If
m A; and Ay have good reduction at every prime p # 2, and

m for every prime p in {5,7,11,17,23,31} the characteristic
polynomials of Frobenius for Ay and A, are equal,

then Ay and A, are isogeneous over Q.

Theorem

The number of isogeny classes of two-dimensional abelian varieties
A over Q with good reduction at every prime p # 2 is at most
9.3-10%.
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Outline

Conclusions and outlook
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Conclusions and outlook

Conclusions:
m Faltings method in general not practical.
Outlook:

m Gal (@S/Q) for S = {2, p,o0} with p = +3 mod 8 known.

m Global function field.

m If Ay, Ay are abelian surfaces over (Q, then compute the
maximal exponent 4 subfield of Q(A1[2°°], A2[2°°]).

m Compute all genus 2 curves C/Q with a rational point and
good reduction outside S = {2,3,00} and Q(Jac(C)[2]) a
2-extension.
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