Faltings method, Galois extensions of exponent four and abelian surfaces over $\mathbb Q$

Ane Anema

Rijksuniversiteit Groningen

22 January 2016

Motivation

 \blacksquare Consider the following curves over $\mathbb Q$

$$C: y^{2} = (x^{3} + 60x + 20)(60x + 20)(60x - 60)$$

$$E_{1}: y^{2} = x^{3} - 39x - 70$$

$$E_{2}: y^{2} = x^{3} - 52500x - 5537500.$$

- Are Jac(*C*) and $E_1 \times E_2$ isogeneous over \mathbb{Q} ?
- Possible methods to answer this question:
 - **1** \mathbb{C} uniformization, see Van Wamelen (1999);
 - **2** \mathbb{Q}_p uniformization, see Kadziela (2007);
 - 3 Faltings method.

Outline

1 Faltings method

- 2 Galois extensions of exponent 4
- 3 Abelian surfaces
- 4 Conclusions and outlook

History

- Introduced by Faltings (1983) to prove Shafarevich Conjecture.
- Made effective by Serre for certain elliptic curves.
- Extended to more general 2-adic 2-dimensional representations by Livné (1987) and by Chênevert (2008).
- Generalized to *l*-adic *d*-dimensional representations by Grenié (2007).

Isogeny Theorem

Theorem (Faltings)

If A_1, A_2 are abelian varieties of dimension d over a number field K, then:

- the action of G_K on $T_\ell A_i \otimes \mathbb{Q}_\ell$ is semi-simple for i = 1, 2,
- there is an isomorphism

$$\operatorname{Hom}_{\mathcal{K}}(\mathcal{A}_1,\mathcal{A}_2)\otimes \mathbb{Z}_\ell \longrightarrow \operatorname{Hom}_{\mathbb{Z}_\ell[\mathcal{G}_{\mathcal{K}}]}(\mathcal{T}_\ell\mathcal{A}_1,\mathcal{T}_\ell\mathcal{A}_2).$$

The method - a version in between Chênevert and Grenié

Theorem

G a profinite group,

• $\rho_i: G \to \operatorname{GL}_d(\mathbb{Z}_\ell)$ a continuous representation for i = 1, 2,

•
$$e \in \mathbb{Z}$$
 such that $d \leq \ell^e$,

- $\Sigma \subset G$ such that the characteristic polynomials of $\rho_1(h)$ and $\rho_2(h)$ are equal for all $h \in \Sigma$, and
- $N \subset G$ an open normal subgroup with $\bar{\rho}_i(N)$ a ℓ -subgroup.

lf

$$\overline{\Sigma} = \left\{ gh^ng^{-1} : g \in G, h \in \Sigma, n \in \mathbb{Z} \right\}$$

maps surjectively to G/N^{ℓ^e} , then tr $(\rho_1) = tr (\rho_2)$.

Note: N^m is defined as the closure of $\langle n^m : n \in N \rangle$ in G.

Corollary

If the ρ_i are also semi-simple, then they are isomorphic.

Example

- E_1, E_2 elliptic curves over a number field K.
- S the set of primes of bad reduction of E_i and primes above 2.
- Galois representations

Apply method to ρ'_1, ρ'_2 :

•
$$d = 2$$
, $\ell = 2$ and $e = 1$.

- $G = \text{Gal}(K_S/K) \text{ and } N = \text{Gal}(K_S/K(E_1[2], E_2[2])).$
- $G/N^2 \cong \text{Gal}(L/K)$ with L the maximal exponent 2 extension of $K(E_1[2], E_2[2])$ in K_S .
- Čebotarev density theorem.

Deviation group

• Consider the \mathbb{Z}_{ℓ} -linear extension of $\rho = (\rho_1, \rho_2)$

$$\tilde{\rho}: \mathbb{Z}_{\ell}[G] \longrightarrow \mathsf{M}_d(\mathbb{Z}_{\ell}) \oplus \mathsf{M}_d(\mathbb{Z}_{\ell}).$$

• Denote
$$M = \operatorname{im} \tilde{\rho}$$
.

• The deviation map δ is

$$\delta: \mathbb{Z}_{\ell}[G] \xrightarrow{\tilde{\rho}} M \longrightarrow M/\ell M$$

and the deviation group is $\delta(G) \subset (M/\ell M)^*$.

Proposition

Let $\Sigma \subset G$ be such that for every conjugacy class C of $\delta(G)$ there exists a $g \in \Sigma$ with $\delta(g) \in C$. Then

$$\operatorname{\mathsf{tr}}\left(\rho_{1}\right)\neq\operatorname{\mathsf{tr}}\left(\rho_{2}\right)\quad\Longrightarrow\quad\operatorname{\mathsf{tr}}\left(\rho_{1}\right)|_{\Sigma}\neq\operatorname{\mathsf{tr}}\left(\rho_{2}\right)|_{\Sigma}.$$

Proof.

• Suppose tr $(\rho_1) \neq$ tr (ρ_2) . Then

$$m = \max \{n \in \mathbb{Z} : \operatorname{tr}(\rho_1) \equiv \operatorname{tr}(\rho_2) \mod \ell^n\} < \infty.$$

- Choose $g \in G$ such that $tr(\rho_1(g)) \not\equiv tr(\rho_2(g)) \mod \ell^{m+1}$.
- Take $h \in \Sigma$ such that $\delta(h) = \delta(aga^{-1})$ for some $a \in G$.
- Consider the *R*-module homomorphism $\psi: M \to R/\ell^{m+1}$

$$(A,B) \longmapsto \operatorname{tr}(A) - \operatorname{tr}(B) \mod \ell^{m+1}$$

■ Since $\ell M \subset \ker \psi$, we get $\overline{\psi} : M/\ell M \to R/\ell^{m+1}$. ■ Now

$$\psi \circ
ho(h) = ar{\psi} \circ \delta(h) = ar{\psi} \circ \deltaig(\mathsf{aga}^{-1} ig) = \psi \circ
hoig(\mathsf{aga}^{-1}ig) = \psi \circ
ho(g).$$

• So tr $(\rho_1(h)) \neq$ tr $(\rho_2(h))$.

Since $\delta(G) \subset (M/\ell M)^*$ and

commutes, we obtain $\delta(G) \rightarrow \overline{\rho}(G)$.

Example (In general $\delta(G) \rightarrow \overline{\rho}(G)$ not injective)

There exist non-isogeneous elliptic curves E_1, E_2 over \mathbb{Q} with all 2-torsion rational. In this case $\bar{\rho}(G_{\mathbb{Q}})$ is trivial, but $\delta(G_{\mathbb{Q}})$ is not!

Proposition

The order of $\delta(G)$ is less than ℓ^{2d^2} .

Residue kernel

• Suppose that $N = \ker \bar{\rho}$, then

$$1 \longrightarrow \delta(N) \longrightarrow \delta(G) \longrightarrow \bar{\rho}(G) \longrightarrow 1$$

with $\bar{\rho}(G)$ in principal well-known and $\delta(N)$ a ℓ -group.

Proposition

Let $e \in \mathbb{Z}$ such that $d \leq \ell^e$ and N such that $\overline{\rho}(N)$ a ℓ -group. If $n \in N$ and the characteristic polynomials of $\rho_1(n)$ and $\rho_2(n)$ are equal, then $\delta(n)$ has order dividing ℓ^e .

Proof.

- Denote the characteristic polynomial of $\rho_i(n)$ by $\chi_i \in \mathbb{Z}_{\ell}[x]$.
- Cayley-Hamilton Theorem: $\chi_i(\rho_i(n)) = 0$.
- Jordan Normal Form of $\bar{\rho}_i(n)$: $\chi_i \equiv (x-1)^d \mod \ell$.
- Since $\chi_1 = \chi_2$ and $\chi_i = (x-1)^d \ell F$ for some $F \in \mathbb{Z}_{\ell}[x]$,

$$(\rho(n)-1)^d = \ell F(\rho(n)) \in \ell M.$$

• Hence $\delta(n)^{\ell^e} = 1$.

Recall

Theorem

- G a profinite group,
- $\rho_i: G \to \operatorname{GL}_d(\mathbb{Z}_\ell)$ a continuous representation for i = 1, 2,
- $e \in \mathbb{Z}$ such that $d \leq \ell^e$,
- $\Sigma \subset G$ such that the characteristic polynomials of $\rho_1(h)$ and $\rho_2(h)$ are equal for all $h \in \Sigma$, and
- $N \subset G$ an open normal subgroup with $\bar{\rho}_i(N)$ a ℓ -subgroup.

lf

$$\overline{\Sigma} = \left\{ gh^ng^{-1} : g \in G, h \in \Sigma, n \in \mathbb{Z} \right\}$$

maps surjectively to G/N^{ℓ^e} , then tr $(\rho_1) = tr (\rho_2)$.

Proof of the theorem

Recall that $\overline{\Sigma} = \left\{ gh^kg^{-1} : g \in G, h \in \Sigma, k \in \mathbb{Z} \right\}.$

Given $h \in \overline{\Sigma}$, the characteristic polynomials of $\rho_i(h)$ are equal. Claim: $N^{\ell^e} \subset \ker \delta$.

Consider

■ Let
$$\overline{n} \in \delta(N)/\delta(N)^{\ell^e}$$
 and $n \in N$ a lift of \overline{n} .
■ $nN^{\ell^e} = hN^{\ell^e}$ with $h \in \overline{\Sigma}$, because $\overline{\Sigma}/N^{\ell^e} = G/N^{\ell^e}$.
■ $h \in N$ since $N^{\ell^e} \subset N$.

•
$$\delta(h) \in \delta(N)[\ell^e].$$

Proposition

Let H be a finite ℓ -group. If for all $g \in H$ there exists a $h \in H[\ell^e]$ such that $gH^{\ell^e} = hH^{\ell^e}$, then H has exponent dividing ℓ^e .

Suppose that $tr(\rho_1) \neq tr(\rho_2)$.

- Let $C \subset \delta(G)$ be a conjugacy class.
- Choose a $g \in G$ such that $\delta(g) \in C$.
- There exists a $h \in \overline{\Sigma}$ such that $gN^{\ell^e} = hN^{\ell^e}$. So $\delta(h) \in C$.
- Hence $\operatorname{tr}(\rho_1)|_{\overline{\Sigma}} \neq \operatorname{tr}(\rho_1)|_{\overline{\Sigma}}$.
- Contradiction.

Remarks

- \mathbb{Z}_{ℓ} can be replaced by $\mathcal{O}_{\mathcal{K}_{\ell}}$ with $[\mathcal{K}_{\ell} : \mathbb{Q}_{\ell}] < \infty$.
- Is G/N^{ℓ^e} finite? If the pro- ℓ quotient of N is finitely generated, then: yes. (Restricted Burnside Problem)
- Grenié uses *powerful pro-p groups* to bound the length of the lower *p*-central series of δ(N):

 $P_1(\delta(N)) \ge P_2(\delta(N)) \ge P_3(\delta(N)) \ge \dots$

with $P_1(G) = G$ and $P_{i+1}(G) = P_i(G)^p[P_i(G), G]$.

1 Faltings method

2 Galois extensions of exponent 4

3 Abelian surfaces

4 Conclusions and outlook

Preliminaries

- Let *K* be a number field and *S* a finite set of places.
- A Galois extension L/K has exponent 4 if Gal (L/K) is of exponent 4.
- If $L_1, L_2/K$ are exponent 4 Galois extensions, then so is $L_1 \cdot L_2/K$.
- The maximal exponent 4 extension K_{S,4} of K unramified outside S is the compositum of all finite exponent 4 Galois extensions of K unramified outside S.

Results

Let
$$K = \mathbb{Q}$$
 and $S = \{2, 3, \infty\}$.
 $[\mathbb{Q}_{5,4} : \mathbb{Q}] = 2^{15}$.

• $\mathbb{Q}_{5,4}$ is the splitting field of $f_1 f_2 f_3$ with

$$\begin{split} f_1 &= x^8 + 4x^6 + 4x^4 - 2, \\ f_2 &= x^{16} - 4x^{14} + 4x^{12} + 4x^{10} - 4x^6 - 20x^4 + 4x^2 + 25, \\ f_3 &= x^{16} - 20x^{12} + 84x^8 + 96x^6 - 128x^4 - 96x^2 - 8. \end{split}$$

■ For all of the 272 conjugacy classes C of

$$G_{S,4} = \operatorname{Gal}\left(\mathbb{Q}_{S,4}/\mathbb{Q}\right)$$

computed the smallest prime p such that $Fr_p \in C$.

■ The 5 largest such *p* are

862417, 926977, 1484737, 1501009, 2977153.

Maximal 2-extensions

Let K̂_S be the maximal 2-extension of K unramified outside S.
Galois cohomology provides a (partial) pro-2 presentation of

$$\hat{G}_S = \operatorname{Gal}\left(\hat{K}_S/K\right).$$

Use Koch (2002) and Wingberg (1991):
K = Q and S = {2,3, ∞}
$$\hat{G}_{5} = \langle s_{3}, t_{3}, t_{\infty} : t_{3}^{2}[t_{3}^{-1}, s_{3}^{-1}], t_{\infty}^{2} \rangle.$$
K = Q and S = {2, ∞}
 $\hat{G}_{5} = \langle s_{3}, t_{\infty} : t_{\infty}^{2} \rangle.$
K = Q(³√10) and S = {p₂, p_{3a}, p_{3b}, ∞_ℝ}
 $\hat{G}_{5} = \langle s_{p_{3a}}, t_{p_{3a}}, s_{p_{3b}}, t_{\infty} : t_{p_{3a}}^{2}[t_{p_{3a}}^{-1}, s_{p_{3a}}^{-1}], t_{p_{3b}}^{2}[t_{p_{3b}}^{-1}, s_{p_{3b}}^{-1}], t_{\infty}^{2} \rangle.$
[Q_{{2,∞}} : Q] = ∞.

Exponent four quotients

K	S	$ G_{S,4} $	2-class	conjugacy classes
Q	$2,\infty$	2 ⁶	4	13
\mathbb{Q}	$2,3,\infty$	2 ¹⁵	5	272
$\mathbb{Q}(\sqrt[3]{10})$	\mathfrak{p}_2,∞	2 ³⁷	7	1 832 960
$\mathbb{Q}(\sqrt[3]{10})$	$\mathfrak{p}_2,\mathfrak{p}_{3a},\mathfrak{p}_{3b},\infty$	2 ²³⁴	7	
Q	$2,3,5,\infty$	$\le 2^{73}$	\leq 5	

- Compute *G*_{*S*,4} from *Ĝ*_{*S*} with the *p*-quotient algorithm in Magma.
- A naive way to obtain Q_{S,4} is as a tower of exponent 2 extensions.

• For
$$K = \mathbb{Q}$$
 and $S = \{2, 3, \infty\}$:

$$\mathbb{Q} \xrightarrow{8} \mathbb{Q}(\zeta_{24}) \xrightarrow{128} L \xrightarrow{32} \mathbb{Q}_{5,4}.$$

п	B(n, 4)	2-class
1	2 ²	2
2	2^{12}	5
3	2 ⁶⁹	7
4	2 ⁴²²	10
5	2 ²⁷²⁸	13

Transitive groups

Suppose that $\mathbb{Q}_{5,4}$ is the splitting field of a monic, irreducible $f \in [x]$ of degree d.

- The action of *G*_{*S*,4} on the roots {*α*₁,...,*α*_{*d*}} of *f* is a transitive group.
- The isomorphism class of a transitive group has a label *d*T*n* with *n* ∈ ℤ_{>0}.
- $\mathbb{Q}(\alpha_1)$ corresponds to a subgroup $H \subset G_{S,4}$ of index d with trivial Core $(G_{S,4}, H)$.

Case $S = \{2, \infty\}$:

- $[G_{S,4}: H] = 8$ and transitive group with label 8T30.
- Tables of number fields by Jones and Roberts (2014):

$$x^8 + 4x^6 + 4x^4 - 2$$

The polynomial of degree 64 in Grenié (2007) defines the same field.

Case
$$S = \{2, 3, \infty\}$$
:

•
$$[G_{S,4}: H] = 128.$$

• Using the normal lattice of $G_{5,4}$ and careful elimination:

$$\mathbb{Q}_{\mathcal{S},4} = \mathbb{Q}_{\{2,\infty\},4} \cdot L_1^{\mathrm{nc}} \cdot L_2^{\mathrm{nc}}$$

•
$$[L_i, \mathbb{Q}] = 16.$$

• Gal (L_1^{nc}/\mathbb{Q}) has label 16T915 or 16T926.
• Gal (L_2^{nc}/\mathbb{Q}) has label 16T1468.

Frobenius elements

Use Dokchitser and Dokchitser (2013) to compute for every conjugacy class $C \subset G_{S,4}$ a prime $p \ge 5$ such that $Fr_p \in C$:

- Recall that $\mathbb{Q}_{5,4}$ is the splitting field of $f = f_1 f_2 f_3$ and consider $G_{5,4} \subset S_{\deg f}$.
- Choose $h = x^3 3x$.
- Define for every conjugacy class C of $G_{S,4}$

$$\Gamma_{\mathcal{C}} = \prod_{\sigma \in \mathcal{C}} \left(x - \sum_{i=1}^{\deg f} h(\alpha_i) \sigma(\alpha_i) \right) \in \mathbb{Z}[x].$$

• In this case the Γ_C are coprime. So

$$\sigma \in C \iff \Gamma_C \left(\sum_{i=1}^{\deg f} h(\alpha_i) \sigma(\alpha_i) \right) = 0.$$

- Factor f over \mathbb{Q}_p .
- Irreducible factors correspond to cycles of Fr_p.
- Compute roots of f in K_p/\mathbb{Q}_p unramified of degree 4.
- Use Hensel Lemma to compute $Fr_p(\alpha_i)$.
- Evaluate in the Γ_C 's.

Outline

1 Faltings method

2 Galois extensions of exponent 4

3 Abelian surfaces

4 Conclusions and outlook

Theorem

Let A_1 and A_2 be abelian varieties of dimension two over \mathbb{Q} . If

- A_1 and A_2 have good reduction at every prime $p \neq 2, 3$,
- the degree of $\mathbb{Q}(A_1[2], A_2[2])/\mathbb{Q}$ is a power of two, and
- for every prime p in 'a known finite list' the characteristic polynomials of Frobenius for A₁ and A₂ are equal,

then A_1 and A_2 are isogeneous over \mathbb{Q} .

Theorem

The number of isogeny classes of two-dimensional abelian varieties A over \mathbb{Q} with good reduction at every prime $p \neq 2,3$ and the degree of $\mathbb{Q}(A[2])/\mathbb{Q}$ a power of two is at most $2.2 \cdot 10^{1783}$.

■ There are no number fields of degree 3, 5, 7 and 9–15 unramified outside 2, see Jones (2010).

Theorem (Grenié)

Let A_1 and A_2 be abelian varieties of dimension two over \mathbb{Q} . If

- A_1 and A_2 have good reduction at every prime $p \neq 2$, and
- for every prime p in {5,7,11,17,23,31} the characteristic polynomials of Frobenius for A₁ and A₂ are equal,

then A_1 and A_2 are isogeneous over \mathbb{Q} .

Theorem

The number of isogeny classes of two-dimensional abelian varieties A over \mathbb{Q} with good reduction at every prime $p \neq 2$ is at most $9.3 \cdot 10^{20}$.

Outline

1 Faltings method

- 2 Galois extensions of exponent 4
- 3 Abelian surfaces
- 4 Conclusions and outlook

Conclusions and outlook

Conclusions:

Faltings method in general not practical.

Outlook:

- Gal $(\hat{\mathbb{Q}}_S/\mathbb{Q})$ for $S = \{2, p, \infty\}$ with $p \equiv \pm 3 \mod 8$ known.
- Global function field.
- If A₁, A₂ are abelian surfaces over Q, then compute the maximal exponent 4 subfield of Q(A₁[2[∞]], A₂[2[∞]]).
- Compute all genus 2 curves C/Q with a rational point and good reduction outside S = {2, 3, ∞} and Q(Jac(C)[2]) a 2-extension.