Faltings method, Galois extensions of exponent four and abelian surfaces over \mathbb{Q}

Ane Anema

Rijksuniversiteit Groningen
22 January 2016

Motivation

■ Consider the following curves over \mathbb{Q}

$$
\begin{aligned}
C: y^{2} & =\left(x^{3}+60 x+20\right)(60 x+20)(60 x-60) \\
E_{1}: y^{2} & =x^{3}-39 x-70 \\
E_{2}: y^{2} & =x^{3}-52500 x-5537500
\end{aligned}
$$

- Are $\operatorname{Jac}(C)$ and $E_{1} \times E_{2}$ isogeneous over \mathbb{Q} ?
- Possible methods to answer this question:
$1 \mathbb{C}$ uniformization, see Van Wamelen (1999);
$2 \mathbb{Q}_{p}$ uniformization, see Kadziela (2007);
3 Faltings method.

Outline

1 Faltings method

2 Galois extensions of exponent 4

3 Abelian surfaces

4 Conclusions and outlook

History

■ Introduced by Faltings (1983) to prove Shafarevich Conjecture.
■ Made effective by Serre for certain elliptic curves.

- Extended to more general 2-adic 2-dimensional representations by Livné (1987) and by Chênevert (2008).
- Generalized to ℓ-adic d-dimensional representations by Grenié (2007).

Isogeny Theorem

Theorem (Faltings)

If A_{1}, A_{2} are abelian varieties of dimension d over a number field K, then:

- the action of G_{K} on $T_{\ell} A_{i} \otimes \mathbb{Q}_{\ell}$ is semi-simple for $i=1,2$,
- there is an isomorphism
$\operatorname{Hom}_{K}\left(A_{1}, A_{2}\right) \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{Z}_{\ell}\left[G_{K}\right]}\left(T_{\ell} A_{1}, T_{\ell} A_{2}\right)$.

The method - a version in between Chênevert and Grenié

Theorem

- G a profinite group,
- $\rho_{i}: G \rightarrow \mathrm{GL}_{d}\left(\mathbb{Z}_{\ell}\right)$ a continuous representation for $i=1,2$,

■ $e \in \mathbb{Z}$ such that $d \leq \ell^{e}$,
$■ \Sigma \subset G$ such that the characteristic polynomials of $\rho_{1}(h)$ and $\rho_{2}(h)$ are equal for all $h \in \Sigma$, and
■ $N \subset G$ an open normal subgroup with $\bar{\rho}_{i}(N)$ a ℓ-subgroup.
If

$$
\bar{\Sigma}=\left\{g h^{n} g^{-1}: g \in G, h \in \Sigma, n \in \mathbb{Z}\right\}
$$

maps surjectively to $G / N^{\ell^{e}}$, then $\operatorname{tr}\left(\rho_{1}\right)=\operatorname{tr}\left(\rho_{2}\right)$.
Note: N^{m} is defined as the closure of $\left\langle n^{m}: n \in N\right\rangle$ in G.

Corollary

If the ρ_{i} are also semi-simple, then they are isomorphic.

Example

- E_{1}, E_{2} elliptic curves over a number field K.
- S the set of primes of bad reduction of E_{i} and primes above 2.
- Galois representations

$$
{\underset{\operatorname{Gal}}{\left(K_{S} / K\right)}}_{G_{K} \xrightarrow{\rho_{i}} \operatorname{Aut}\left(T_{2} E_{i}\right) \cong \mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)}^{\rho_{i}^{\prime}}
$$

- Apply method to $\rho_{1}^{\prime}, \rho_{2}^{\prime}$:
- $d=2, \ell=2$ and $e=1$.
- $G=\operatorname{Gal}\left(K_{S} / K\right)$ and $N=\operatorname{Gal}\left(K_{S} / K\left(E_{1}[2], E_{2}[2]\right)\right)$.
- $G / N^{2} \cong \mathrm{Gal}(L / K)$ with L the maximal exponent 2 extension of $K\left(E_{1}[2], E_{2}[2]\right)$ in K_{S}.
- Čebotarev density theorem.

Deviation group

- Consider the \mathbb{Z}_{ℓ}-linear extension of $\rho=\left(\rho_{1}, \rho_{2}\right)$

$$
\tilde{\rho}: \mathbb{Z}_{\ell}[G] \longrightarrow \mathrm{M}_{d}\left(\mathbb{Z}_{\ell}\right) \oplus \mathrm{M}_{d}\left(\mathbb{Z}_{\ell}\right)
$$

- Denote $M=\operatorname{im} \tilde{\rho}$.
- The deviation map δ is

$$
\delta: \mathbb{Z}_{\ell}[G] \xrightarrow{\tilde{\rho}} M \longrightarrow M / \ell M
$$

and the deviation group is $\delta(G) \subset(M / \ell M)^{*}$.

Proposition

Let $\Sigma \subset G$ be such that for every conjugacy class C of $\delta(G)$ there exists a $g \in \Sigma$ with $\delta(g) \in C$. Then

$$
\operatorname{tr}\left(\rho_{1}\right) \neq\left.\operatorname{tr}\left(\rho_{2}\right) \Longrightarrow \operatorname{tr}\left(\rho_{1}\right)\right|_{\Sigma} \neq\left.\operatorname{tr}\left(\rho_{2}\right)\right|_{\Sigma}
$$

Proof.

- Suppose $\operatorname{tr}\left(\rho_{1}\right) \neq \operatorname{tr}\left(\rho_{2}\right)$. Then

$$
m=\max \left\{n \in \mathbb{Z}: \operatorname{tr}\left(\rho_{1}\right) \equiv \operatorname{tr}\left(\rho_{2}\right) \quad \bmod \ell^{n}\right\}<\infty
$$

- Choose $g \in G$ such that $\operatorname{tr}\left(\rho_{1}(g)\right) \not \equiv \operatorname{tr}\left(\rho_{2}(g)\right) \bmod \ell^{m+1}$.
- Take $h \in \Sigma$ such that $\delta(h)=\delta\left(\right.$ aga $\left.^{-1}\right)$ for some $a \in G$.
- Consider the R-module homomorphism $\psi: M \rightarrow R / \ell^{m+1}$

$$
(A, B) \longmapsto \operatorname{tr}(A)-\operatorname{tr}(B) \quad \bmod \ell^{m+1}
$$

- Since $\ell M \subset$ ker ψ, we get $\bar{\psi}: M / \ell M \rightarrow R / \ell^{m+1}$.
- Now

$$
\psi \circ \rho(h)=\bar{\psi} \circ \delta(h)=\bar{\psi} \circ \delta\left(a g a^{-1}\right)=\psi \circ \rho\left(a g a^{-1}\right)=\psi \circ \rho(g)
$$

- So $\operatorname{tr}\left(\rho_{1}(h)\right) \neq \operatorname{tr}\left(\rho_{2}(h)\right)$.
- Since $\delta(G) \subset(M / \ell M)^{*}$ and

commutes, we obtain $\delta(G) \rightarrow \bar{\rho}(G)$.

Example (In general $\delta(G) \rightarrow \bar{\rho}(G)$ not injective)

There exist non-isogeneous elliptic curves E_{1}, E_{2} over \mathbb{Q} with all 2-torsion rational. In this case $\bar{\rho}\left(G_{\mathbb{Q}}\right)$ is trivial, but $\delta\left(G_{\mathbb{Q}}\right)$ is not!

Proposition

The order of $\delta(G)$ is less than $\ell^{2 d^{2}}$.

Residue kernel

- Suppose that $N=\operatorname{ker} \bar{\rho}$, then

$$
1 \longrightarrow \delta(N) \longrightarrow \delta(G) \longrightarrow \bar{\rho}(G) \longrightarrow 1
$$

with $\bar{\rho}(G)$ in principal well-known and $\delta(N)$ a ℓ-group.

Proposition

Let $e \in \mathbb{Z}$ such that $d \leq \ell^{e}$ and N such that $\bar{\rho}(N)$ a ℓ-group. If $n \in N$ and the characteristic polynomials of $\rho_{1}(n)$ and $\rho_{2}(n)$ are equal, then $\delta(n)$ has order dividing ℓ^{e}.

Proof.

- Denote the characteristic polynomial of $\rho_{i}(n)$ by $\chi_{i} \in \mathbb{Z}_{\ell}[x]$.
- Cayley-Hamilton Theorem: $\chi_{i}\left(\rho_{i}(n)\right)=0$.

■ Jordan Normal Form of $\bar{\rho}_{i}(n): \chi_{i} \equiv(x-1)^{d} \bmod \ell$.

- Since $\chi_{1}=\chi_{2}$ and $\chi_{i}=(x-1)^{d}-\ell F$ for some $F \in \mathbb{Z}_{\ell}[x]$,

$$
(\rho(n)-1)^{d}=\ell F(\rho(n)) \in \ell M
$$

- Hence $\delta(n)^{l^{e}}=1$.

Recall

Theorem

- G a profinite group,
- $\rho_{i}: G \rightarrow \mathrm{GL}_{d}\left(\mathbb{Z}_{\ell}\right)$ a continuous representation for $i=1,2$,
- $e \in \mathbb{Z}$ such that $d \leq \ell^{e}$,

■ $\Sigma \subset G$ such that the characteristic polynomials of $\rho_{1}(h)$ and $\rho_{2}(h)$ are equal for all $h \in \Sigma$, and

- $N \subset G$ an open normal subgroup with $\bar{\rho}_{i}(N)$ a ℓ-subgroup.

If

$$
\bar{\Sigma}=\left\{g h^{n} g^{-1}: g \in G, h \in \Sigma, n \in \mathbb{Z}\right\}
$$

maps surjectively to $G / N^{\ell^{e}}$, then $\operatorname{tr}\left(\rho_{1}\right)=\operatorname{tr}\left(\rho_{2}\right)$.

Proof of the theorem

Recall that $\bar{\Sigma}=\left\{g h^{k} g^{-1}: g \in G, h \in \Sigma, k \in \mathbb{Z}\right\}$.
■ Given $h \in \bar{\Sigma}$, the characteristic polynomials of $\rho_{i}(h)$ are equal. Claim: $N^{\ell^{e}} \subset \operatorname{ker} \delta$.

■ Consider

- Let $\bar{n} \in \delta(N) / \delta(N)^{\ell^{e}}$ and $n \in N$ a lift of \bar{n}.
- $n N^{\ell^{e}}=h N^{\ell^{e}}$ with $h \in \bar{\Sigma}$, because $\bar{\Sigma} / N^{\ell^{e}}=G / N^{\ell^{e}}$.
- $h \in N$ since $N^{\ell^{e}} \subset N$.
- $\delta(h) \in \delta(N)\left[\ell^{e}\right]$.

Proposition

Let H be a finite ℓ-group. If for all $g \in H$ there exists a $h \in H\left[\ell^{e}\right]$ such that $g H^{e^{e}}=h H^{\ell^{e}}$, then H has exponent dividing ℓ^{e}.

So

Suppose that $\operatorname{tr}\left(\rho_{1}\right) \neq \operatorname{tr}\left(\rho_{2}\right)$.

- Let $C \subset \delta(G)$ be a conjugacy class.
- Choose a $g \in G$ such that $\delta(g) \in C$.
- There exists a $h \in \bar{\Sigma}$ such that $g N^{\ell^{e}}=h N^{\ell^{e}}$. So $\delta(h) \in C$.
- Hence $\left.\operatorname{tr}\left(\rho_{1}\right)\right|_{\Sigma} \neq\left.\operatorname{tr}\left(\rho_{1}\right)\right|_{\Sigma}$.
- Contradiction.

Remarks

■ \mathbb{Z}_{ℓ} can be replaced by $\mathcal{O}_{K_{\ell}}$ with $\left[K_{\ell}: \mathbb{Q}_{\ell}\right]<\infty$.

- Is $G / N^{\ell^{e}}$ finite? If the pro- ℓ quotient of N is finitely generated, then: yes. (Restricted Burnside Problem)
- Grenié uses powerful pro-p groups to bound the length of the lower p-central series of $\delta(N)$:

$$
P_{1}(\delta(N)) \geq P_{2}(\delta(N)) \geq P_{3}(\delta(N)) \geq \ldots
$$

with $P_{1}(G)=G$ and $P_{i+1}(G)=P_{i}(G)^{p}\left[P_{i}(G), G\right]$.

Outline

1 Faltings method

2 Galois extensions of exponent 4

3 Abelian surfaces

4 Conclusions and outlook

Preliminaries

- Let K be a number field and S a finite set of places.
- A Galois extension L / K has exponent 4 if $\mathrm{Gal}(L / K)$ is of exponent 4.
- If $L_{1}, L_{2} / K$ are exponent 4 Galois extensions, then so is $L_{1} \cdot L_{2} / K$.
- The maximal exponent 4 extension $K_{S, 4}$ of K unramified outside S is the compositum of all finite exponent 4 Galois extensions of K unramified outside S.

Results

Let $K=\mathbb{Q}$ and $S=\{2,3, \infty\}$.

- $\left[\mathbb{Q}_{s, 4}: \mathbb{Q}\right]=2^{15}$.
- $\mathbb{Q}_{S, 4}$ is the splitting field of $f_{1} f_{2} f_{3}$ with

$$
\begin{aligned}
& f_{1}=x^{8}+4 x^{6}+4 x^{4}-2 \\
& f_{2}=x^{16}-4 x^{14}+4 x^{12}+4 x^{10}-4 x^{6}-20 x^{4}+4 x^{2}+25 \\
& f_{3}=x^{16}-20 x^{12}+84 x^{8}+96 x^{6}-128 x^{4}-96 x^{2}-8
\end{aligned}
$$

- For all of the 272 conjugacy classes C of

$$
G_{S, 4}=\operatorname{Gal}\left(\mathbb{Q}_{s, 4} / \mathbb{Q}\right)
$$

computed the smallest prime p such that $\mathrm{Fr}_{p} \in C$.

- The 5 largest such p are

$$
\text { 862417, 926977, 1484737, 1501009, } 2977153 .
$$

Maximal 2-extensions

- Let \hat{K}_{S} be the maximal 2-extension of K unramified outside S.
- Galois cohomology provides a (partial) pro-2 presentation of

$$
\hat{G}_{S}=\operatorname{Gal}\left(\hat{K}_{S} / K\right)
$$

- Use Koch (2002) and Wingberg (1991):
- $K=\mathbb{Q}$ and $S=\{2,3, \infty\}$

$$
\hat{G}_{S}=\left\langle s_{3}, t_{3}, t_{\infty}: t_{3}^{2}\left[t_{3}^{-1}, s_{3}^{-1}\right], t_{\infty}^{2}\right\rangle .
$$

- $K=\mathbb{Q}$ and $S=\{2, \infty\}$

$$
\hat{G}_{S}=\left\langle s_{3}, t_{\infty}: t_{\infty}^{2}\right\rangle .
$$

- $K=\mathbb{Q}(\sqrt[3]{10})$ and $S=\left\{\mathfrak{p}_{2}, \mathfrak{p}_{3 a}, \mathfrak{p}_{3 b}, \propto_{\mathbb{R}}\right\}$

$$
\hat{G}_{S}=\left\langle s_{p_{3 a}}, t_{p_{3 a}}, s_{p_{3 b} b}, t_{p_{3 b}}, t_{\infty}: t_{p_{3}}^{2}\left[t_{p_{3 a}}^{-1}, s_{p_{3 a}}^{-1}\right], t_{p_{3 b}}^{2}\left[t_{p_{3 b}}^{-1}, s_{p_{3 b}}^{-1}\right], t_{\infty}^{2}\right\rangle .
$$

■ $\left[\mathbb{Q}_{\{2, \infty\}}: \mathbb{Q}\right]=\infty$.

Exponent four quotients

K	S	$\left\|G_{S, 4}\right\|$	2-class	conjugacy classes
\mathbb{Q}	$2, \infty$	2^{6}	4	13
\mathbb{Q}	$2,3, \infty$	2^{15}	5	272
$\mathbb{Q}(\sqrt[3]{10})$	\mathfrak{p}_{2}, ∞	2^{37}	7	1832960
$\mathbb{Q}(\sqrt[3]{10})$	$\mathfrak{p}_{2}, \mathfrak{p}_{3 a}, \mathfrak{p}_{3 b}, \infty$	2^{234}	7	
\mathbb{Q}	$2,3,5, \infty$	$\leq 2^{73}$	≤ 5	

- Compute $G_{S, 4}$ from \hat{G}_{S} with the p-quotient algorithm in Magma.
- A naive way to obtain $\mathbb{Q}_{s, 4}$ is as a tower of exponent 2 extensions.
- For $K=\mathbb{Q}$ and $S=\{2,3, \infty\}$:

n	$\|B(n, 4)\|$	2 -class
1	2^{2}	2
2	2^{12}	5
3	2^{69}	7
4	2^{422}	10
5	2^{2728}	13

$$
\mathbb{Q} \xrightarrow{8} \mathbb{Q}\left(\zeta_{24}\right) \xrightarrow{128} L \xrightarrow{32} \mathbb{Q}_{s, 4} .
$$

Transitive groups

Suppose that $\mathbb{Q}_{s, 4}$ is the splitting field of a monic, irreducible $f \in[x]$ of degree d.

- The action of $G_{S, 4}$ on the roots $\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ of f is a transitive group.
- The isomorphism class of a transitive group has a label d Tn with $n \in \mathbb{Z}>0$.
- $\mathbb{Q}_{s, 4}=\mathbb{Q}\left(\alpha_{1}\right)^{\mathrm{nc}}$.
- $\mathbb{Q}\left(\alpha_{1}\right)$ corresponds to a subgroup $H \subset G_{S, 4}$ of index d with trivial Core $\left(G_{S, 4}, H\right)$.

Case $S=\{2, \infty\}$:
■ $\left[G_{S, 4}: H\right]=8$ and transitive group with label 8T30.

- Tables of number fields by Jones and Roberts (2014):

$$
x^{8}+4 x^{6}+4 x^{4}-2
$$

- The polynomial of degree 64 in Grenié (2007) defines the same field.
Case $S=\{2,3, \infty\}$:
■ $\left[G_{S, 4}: H\right]=128$.
■ Using the normal lattice of $G_{S, 4}$ and careful elimination:

$$
\mathbb{Q}_{s, 4}=\mathbb{Q}_{\{2, \infty\}, 4} \cdot L_{1}{ }^{\mathrm{nc}} \cdot L_{2}{ }^{\mathrm{nc}}
$$

- $\left[L_{i}, \mathbb{Q}\right]=16$.
- Gal $\left(L_{L^{n c}} / \mathbb{Q}\right)$ has label 16 T915 or 16 T926.
- $\operatorname{Gal}\left(L_{2}{ }^{\mathrm{nc}} / \mathbb{Q}\right)$ has label 16T1468.

Frobenius elements

Use Dokchitser and Dokchitser (2013) to compute for every conjugacy class $C \subset G_{S, 4}$ a prime $p \geq 5$ such that $\operatorname{Fr}_{p} \in C$:

■ Recall that $\mathbb{Q}_{s, 4}$ is the splitting field of $f=f_{1} f_{2} f_{3}$ and consider $G_{S, 4} \subset S_{\operatorname{deg} f}$.

- Choose $h=x^{3}-3 x$.

■ Define for every conjugacy class C of $G_{S, 4}$

$$
\Gamma_{C}=\prod_{\sigma \in C}\left(x-\sum_{i=1}^{\operatorname{deg} f} h\left(\alpha_{i}\right) \sigma\left(\alpha_{i}\right)\right) \in \mathbb{Z}[x] .
$$

■ In this case the Γ_{C} are coprime. So

$$
\sigma \in C \Longleftrightarrow \Gamma_{C}\left(\sum_{i=1}^{\operatorname{deg} f} h\left(\alpha_{i}\right) \sigma\left(\alpha_{i}\right)\right)=0
$$

- Factor f over \mathbb{Q}_{p}.

■ Irreducible factors correspond to cycles of Fr_{p}.
■ Compute roots of f in K_{p} / \mathbb{Q}_{p} unramified of degree 4.
■ Use Hensel Lemma to compute $\operatorname{Fr}_{p}\left(\alpha_{i}\right)$.

- Evaluate in the Γ_{C} 's.

Outline

1 Faltings method

2 Galois extensions of exponent 4

3 Abelian surfaces

4 Conclusions and outlook

Theorem

Let A_{1} and A_{2} be abelian varieties of dimension two over \mathbb{Q}. If

- A_{1} and A_{2} have good reduction at every prime $p \neq 2,3$,
- the degree of $\mathbb{Q}\left(A_{1}[2], A_{2}[2]\right) / \mathbb{Q}$ is a power of two, and
- for every prime p in 'a known finite list' the characteristic polynomials of Frobenius for A_{1} and A_{2} are equal, then A_{1} and A_{2} are isogeneous over \mathbb{Q}.

Theorem

The number of isogeny classes of two-dimensional abelian varieties A over \mathbb{Q} with good reduction at every prime $p \neq 2,3$ and the degree of $\mathbb{Q}(A[2]) / \mathbb{Q}$ a power of two is at most $2.2 \cdot 10^{1783}$.

- There are no number fields of degree 3,5,7 and 9-15 unramified outside 2, see Jones (2010).

Theorem (Grenié)

Let A_{1} and A_{2} be abelian varieties of dimension two over \mathbb{Q}. If

- A_{1} and A_{2} have good reduction at every prime $p \neq 2$, and
- for every prime p in $\{5,7,11,17,23,31\}$ the characteristic polynomials of Frobenius for A_{1} and A_{2} are equal, then A_{1} and A_{2} are isogeneous over \mathbb{Q}.

Theorem

The number of isogeny classes of two-dimensional abelian varieties A over \mathbb{Q} with good reduction at every prime $p \neq 2$ is at most $9.3 \cdot 10^{20}$.

Outline

1 Faltings method

2 Galois extensions of exponent 4

3 Abelian surfaces

4 Conclusions and outlook

Conclusions and outlook

Conclusions:

- Faltings method in general not practical.

Outlook:

- Gal $\left(\hat{\mathbb{Q}}_{s} / \mathbb{Q}\right)$ for $S=\{2, p, \infty\}$ with $p \equiv \pm 3 \bmod 8$ known.
- Global function field.
- If A_{1}, A_{2} are abelian surfaces over \mathbb{Q}, then compute the maximal exponent 4 subfield of $\mathbb{Q}\left(A_{1}\left[2^{\infty}\right], A_{2}\left[2^{\infty}\right]\right)$.
- Compute all genus 2 curves C / \mathbb{Q} with a rational point and good reduction outside $S=\{2,3, \infty\}$ and $\mathbb{Q}(\operatorname{Jac}(C)[2])$ a 2-extension.

