Elliptic curves and the Hesse pencil

Ane Anema
RUG
28 November 2013

Outline

(1) Introduction

(2) Flex points and 3-torsion points

(3) Existence of linear change of coordinates

Galois representations on 3-torsion

- Let k be a perfect field of $\operatorname{char}(k) \neq 2,3$.
- Denote the absolute Galois group of k by G_{k}.
- Given an elliptic curve E defined over k, the action of G_{k} on the coordinates of the points of E induces

$$
\rho: G_{k} \rightarrow \operatorname{Aut}(E[3]),
$$

that is, $E[3]$ is a G_{k}-module.

The Hesse pencil of a cubic curve

- Consider $E=Z(F)$ with $F \in k[X, Y, Z]_{\text {hom }}$ and $\operatorname{deg} F=3$.
- Define the Hessian of F as

$$
\operatorname{Hess}(F)=\operatorname{det}\left(\begin{array}{ccc}
\frac{\partial^{2} F}{\partial X^{2}} & \frac{\partial^{2} F}{\partial X \partial Y} & \frac{\partial^{2} F}{\partial X \partial Z} \\
\frac{\partial^{2} F}{\partial X \partial Y} & \frac{\partial^{2} F}{\partial Y^{2}} & \frac{\partial^{2} F}{\partial Y \partial Z} \\
\frac{\partial^{2} F}{\partial X \partial Z} & \frac{\partial^{2} F}{\partial Y \partial Z} & \frac{\partial^{2} F}{\partial Z^{2}}
\end{array}\right) .
$$

- The Hesse pencil of E is defined as

$$
\mathcal{E}=Z(t F+\operatorname{Hess}(F))
$$

over $k(t)$.

- Denote the member of \mathcal{E} at $t_{0} \in \mathbb{P}^{1}(k)$ by $E_{t_{0}}$, i.e.

$$
E_{t_{0}}= \begin{cases}Z(F) & \text { if } t_{0}=\infty \\ Z\left(t_{0} F+\operatorname{Hess}(F)\right) & \text { otherwise }\end{cases}
$$

Theorem

If E and E^{\prime} are elliptic curves given by some Weierstrass equation defined over k, then the following two statements are equivalent:
(1) $E^{\prime} \cong_{k} E_{t_{0}}$ for some $t_{0} \in \mathbb{P}^{1}(k)$,
(2) there exists a G_{k}-module isomorphism $E[3] \rightarrow E^{\prime}[3]$ respecting the Weil-pairings.

- Related to earlier results by:
- K. Rubin and A. Silverberg (1993),
- T.A. Fisher (2012),
- M. Kuwata (2012).

Outline

(1) Introduction

(2) Flex points and 3-torsion points

(3) Existence of linear change of coordinates

Flex points

- A point P on E is called a flex point if there is a line L which intersects E at P with multiplicity ≥ 3.

Proposition

If $P \in E$ and char $(k) \neq 2$, then

$$
P \text { flex point } \Longleftrightarrow \quad P \in Z(\operatorname{Hess}(F)) .
$$

Corollary

If $P \in E$ is a flex point, then $P \in \mathcal{E}$ and is again a flex point.

- Use

$$
\operatorname{Hess}(t F+\operatorname{Hess}(F))=\alpha F+\beta \operatorname{Hess}(F)
$$

for some $\alpha, \beta \in k[t]$.

3-torsion points

- Let $E=Z(F)$ with $F \in k[X, Y, Z]_{\text {hom }}$ and $\operatorname{deg} F=3$ be an elliptic curve with unit element O.

Proposition

Let $S, T \in E$. If S is a flex point, then

$$
T \text { flex point } \Longleftrightarrow S-T \in E[3] .
$$

- From now on assume that O is a flex point, then
- O is a flex point on \mathcal{E},
- choose O as the unit element of \mathcal{E},
- a flex point on E is a 3 -torsion point on E,
- so $E[3] \subset \mathcal{E}[3]$,
- in fact $E[3]=\mathcal{E}[3]$ since char $(k) \neq 3$,
- as groups as well.
- Also $E[3]=E_{t_{0}}[3]$ for all $t_{0} \in \mathbb{P}^{1}(k)$ for which $E_{t_{0}}$ is non-singular.

The Weil-pairing

- Let e_{3} and $e_{3}^{t_{0}}$ be the Weil-pairings on the 3-torsion of \mathcal{E} and $E_{t_{0}}$.

Proposition

If O is a flex point, then $e_{3}=e_{3}^{t_{0}}$ on $E[3]$.

- Let $S, T \in \mathcal{E}[3]$ such that $\mathcal{E}[3]=\langle S, T\rangle$.
- Denote the tangent line to \mathcal{E} at P by L_{P}.
- Via $D_{S}=(S)-(O)$ and $D_{T}=2(T)-2(-T)$ obtain

$$
e_{3}(S, T)=\left(\frac{L_{S}(T) L_{O}(-T) L_{T}(O) L_{-T}(S)}{L_{O}(T) L_{S}(-T) L_{-T}(O) L_{T}(S)}\right)^{2}
$$

- Let $s \in \bar{k}(t)$ be a local coordinate at t_{0}.
- The line L_{O} modulo s is the tangent line to $E_{t_{0}}$ at O.
- Construct $e_{3}^{t_{0}}(S, T)$ as above.

Outline

(1) Introduction

(2) Flex points and 3-torsion points
(3) Existence of linear change of coordinates

- Let E and E^{\prime} be elliptic curves given by a Weierstrass equation defined over k.

Proposition

If $\phi: E[3] \rightarrow E^{\prime}[3]$ is an isomorphism which respects the Weil-pairings, then there exists a linear change of coordinates $\Phi: E_{t_{0}} \rightarrow E^{\prime}$ for some $t_{0} \in \mathbb{P}^{1}(\bar{k})$ such that $\left.\Phi\right|_{E[3]}=\phi$.

Hesse pencil in Weierstrass form

Lemma

Let $E=Z\left(x^{3}+a x z^{2}+b z^{3}-y^{2} z\right)$ be an elliptic curve. The linear change of coordinates

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=A\left(\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right) \quad \text { with } \quad A=\left(\begin{array}{ccc}
t & 0 & 3 a t^{2}-27 b t-9 a^{2} \\
0 & 1 & 0 \\
-3 & 0 & t^{3}+9 a t-27 b
\end{array}\right)
$$

transforms \mathcal{E} into $\mathcal{E}^{W}=Z\left(\xi^{3}+a_{t} \xi \zeta^{2}+b_{t} \zeta^{3}-\eta^{2} \zeta\right)$ with

$$
a_{t}=a t^{4}+\ldots \quad \text { and } \quad b_{t}=b t^{6}+\ldots
$$

Moreover $\Delta\left(\mathcal{E}^{W}\right)=\Delta(E)(\operatorname{det} A)^{3}$ with

$$
\operatorname{det} A=t^{4}+18 a t^{2}-108 b t-27 a^{2} .
$$

Proof of the proposition

- Let j_{0} and j_{0}^{\prime} be the j-invariants of E and E^{\prime}.
- Assume that $j_{0}^{\prime} \neq j_{0}, 0,1728$.
- For which $t_{i} \in \mathbb{P}^{1}(\bar{k})$ is $j\left(E_{t_{i}}\right)=j_{0}^{\prime}$?
- Precisely for the zeros of the polynomial

$$
G=-1728\left(4 a_{t}\right)^{3}-j_{0}^{\prime} \Delta\left(\mathcal{E}^{W}\right)=\left(j_{0}-j_{0}^{\prime}\right) \Delta(E) t^{12}+\ldots
$$

- It has discriminant

$$
-3^{147} j_{0}^{\prime 8}\left(j_{0}^{\prime}-1728\right)^{6} \Delta(E)^{44}
$$

- Thus G has precisely 12 zeros.
- Define

$$
\phi_{i, \sigma}=\left.\sigma \circ \Psi_{i} \circ A_{i}\right|_{E_{t_{i}}[3]}: E[3] \rightarrow E^{\prime}[3]
$$

for every $i=1, \ldots, 12$ and $\sigma \in \operatorname{Aut}\left(E^{\prime}\right)$, where

- $A_{i}: E_{t_{i}} \rightarrow E_{t_{i}}^{W}$ is induced by $A: \mathcal{E} \rightarrow \mathcal{E}^{W}$,
- $\Psi_{i}: E_{t_{i}}^{W} \rightarrow E^{\prime}$ an isomorphism.

Linear change of coordinates and 3-torsion (intermezzo)

Lemma

If $E[3]=\langle S, T\rangle$ and $E^{\prime}[3]=\left\langle S^{\prime}, T^{\prime}\right\rangle$, then $\exists!A \in \mathrm{PGL}_{3}(\bar{k})$ such that $O \mapsto O^{\prime}, \quad S \mapsto S^{\prime}, \quad T \mapsto T^{\prime}, \quad S+T \mapsto S^{\prime}+T^{\prime}$.

- No three of $O, S, T, S+T$ are collinear:
- Suppose that O, S and T are contained in some line L, then

$$
\operatorname{div}\left(\frac{L}{L_{O}}\right)=(O)+(S)+(T)-3(O)
$$

so $S+T=O$ in E, which is impossible.

- No three of $O^{\prime}, S^{\prime}, T^{\prime}, S^{\prime}+T^{\prime}$ are collinear.
- Hence such a A exists.

Proof of the proposition (continued)

- Suppose that $\phi_{i, \sigma}=\phi_{j, \tau}$, then
- previous lemma implies $\sigma \circ \Psi_{i} \circ A_{i}=\tau \circ \Psi_{j} \circ A_{j}$
- members of \mathcal{E} only have 3 -torsion points in common, so $i=j$,
- A_{i} and Ψ_{i} are isomorphisms, therefore $\sigma=\tau$.
- The $\phi_{i, \sigma}$ respect the Weil-pairings,
- There are $12 \cdot \# \operatorname{Aut}\left(E^{\prime}\right)=24$ distinct $\phi_{i, \sigma}$'s.

Lemma

Of the 48 isomorphisms $E[3] \rightarrow E^{\prime}[3]$, 24 respect the Weil-pairings.

- Hence $\phi=\phi_{i, \sigma}$ for some $i=1, \ldots, 12$ and $\sigma \in \operatorname{Aut}\left(E^{\prime}\right)$.

Outline

(1) Introduction

(2) Flex points and 3-torsion points
(3) Existence of linear change of coordinates
(4) Proof of the theorem

Proof of the theorem (\Longrightarrow)

- Assume that there exists an isomorphism $\Phi: E_{t_{0}} \rightarrow E^{\prime}$ for some $t_{0} \in \mathbb{P}^{1}(k)$ defined over k, then

$$
\left.\Phi\right|_{E_{t_{0}}[3]}: E_{t_{0}}[3] \rightarrow E^{\prime}[3] .
$$

is a G_{k}-module isomorphism and respects the Weil-pairings.

- $E[3]=E_{t_{0}}$ [3] as groups with identical Weil-pairings.
- Hence $\phi=\left.\Phi\right|_{E_{t_{0}}[3]}$ is the map we want.

Proof of the theorem (\Longleftarrow)

- Suppose that there exists a G_{k}-module isomorphism $\phi: E[3] \rightarrow E^{\prime}[3]$ respecting the Weil-pairings.
- There exists a linear isomorphism $\Phi: E_{t_{0}} \rightarrow E^{\prime}$ for some $t_{0} \in \mathbb{P}^{1}(\bar{k})$ with $\left.\Phi\right|_{E[3]}=\phi$,
- Now

$$
\sigma(\Phi)(\sigma(S))=\sigma \circ \Phi(S)=\sigma \circ \phi(S)=\phi \circ \sigma(S)=\Phi(\sigma(S))
$$

for all $S \in E[3]$ and $\sigma \in G_{k}$, so $\sigma(\Phi)=\Phi$ for all $\sigma \in G_{k}$.

Lemma

Since k is a perfect field, $\mathrm{PGL}_{3}(\bar{k})^{G_{k}}=\mathrm{PGL}_{3}(k)$.

- Hence $\Phi \in \mathrm{PGL}_{3}(k)$, that is $\Phi: E_{t_{0}} \rightarrow E^{\prime}$ is defined over k.

