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Fundamental groups

Torus T

π (T ) ∼= Z× Z

Punctured torus S

π (S) ∼= Z ∗ Z
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Branch condition

Let S̃ and T̃ be the universal covering spaces of S and T .

Theorem

Let H ⊂ π (S) be a subgroup and Y → T be the analytic
continuation of S̃/H → S. Then

Y → T unramified ⇐⇒ H normal, π (S) /H abelian.

A covering space of the torus is normal and its group of deck
transformations is abelian.

Consider

S̃ // S̃/ [π (S) , π (S)] //

��

S̃/H //

��

S

��
T̃ // Y // T
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Example

Let a, b be generators of π (S).

Define φ : 〈a, b〉 → S3 as

a 7→ (12) and b 7→ (23) .

Consider X → S corresponding to H = ker φ, which

has six sheets,
can be analytically continued to Y → T , and
has π (S) /H ∼= S3.

Let X ′ → S correspond to H ′ = φ−1 (〈(12)〉), then

has three sheets,
can be analytically continued to Y ′ → T , and
H ′ is not normal.
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The algebraic analog

Let k be an algebraically closed field of char k 6= 2, 3.

Consider the elliptic curve

E : y2 = x3 − 2ax2 +
(
a2 − 4b

)
x

over k with a, b ∈ k such that b 6= 0 and a2 6= 4b.

The idea is as follows

D

ρ ��

C
λ

��
χ

��

E

E ′

φ��



Topological perspective Algebraic example Family of branched covering spaces Conclusions

The algebraic analog

Consider the elliptic curve over k

E ′ : η2 = ξ3 + aξ2 + bξ.

Let φ : E ′ → E be an isogeny of degree two such that

ker φ =
{

O ′,T ′
}
,

where T ′ = (0, 0) ∈ E ′ is a point of order two.

Write C for the curve that corresponds to the splitting field of

F = X 3 − ξ ∈ k
(
E ′
)

[X ]

and χ : C → E ′ for the morphism induced by k (E ′) ⊂ k (C ).



Topological perspective Algebraic example Family of branched covering spaces Conclusions

The algebraic analog

Since the coordinate function ξ has

div ξ = 2T ′ − 2O ′,

then χ : C → E ′ branches only above O ′ and T ′, where it has
ramification index three.

Choose the isogeny φ : E ′ → E as

(ξ, η) 7−→

(
η2

ξ2
,
η
(
b − ξ2

)
ξ2

)
.

So k (E ′) = k (E ) (ξ) and k (C ) = k (E ) (s), where s3 = ξ.

Extension k (C ) of k (E ) is Galois with

Gal (k (C ) /k (E )) ∼= S3,

because s has minimum polynomial X 6 + (a− x) X 3 + b

(X − s)
(
X − s2

) (
X − s3

)(
X −

3
√

b

s

)(
X −

3
√

b

s2

)(
X −

3
√

b

s3

)
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The algebraic analog

Let D be the curve with function field k (C ){id,τ}.

Theorem

The curve D is given by the equation

β2 =
(
α3 − 3cα + a

) (
α2 − 4c

)
and has genus two.

Theorem

The inclusion k (E )→ k (D) corresponds to a morphism
ρ : D → E given by

(α, β) 7−→
(
α3 − 3cα + a,−β

(
α2 − c

))
and ramifies only at infinity on D. At that point the ramification
index is three.
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The construction

Consider the following elliptic curve over C

B : 4a3 + 27b2 = 1

with unit element O.

Also consider the elliptic curve over C (B) defined by

E : y2 = x3 + ax + b.

Let ` be a prime number.

Since C (B) (E [`]) is a finite extension of C (B), then it is a
function field of a curve C` over C.

The inclusion of function fields induces a morphism

π` : C` → B.
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Results

Theorem

The morphism π` : C` → B is Galois.

Theorem

Let P ∈ C`. If π` (P) 6= O, then π` is unramified at P.

Theorem

Let P ∈ C`. If π` (P) = O, then

π2 is unramified at P,

π3 is ramified at P with eπ3 (P) = 2,

π` is ramified at P for ` > 3 with eπ` (P) = 2`.

Notice that G` = Gal (C (C`) /C (B)) is a subgroup of
SL2 (Z/`Z).
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Proofs

Case P ∈ C` and π` (P) = Q 6= O.

Notice that E : y2 = x3 + ax + b over C (C`) is minimal at P.

The extension Ĉ (C`)P/Ĉ (B)Q is also Galois.

The eπ` (P) is equal to the degree of this extension.

The reduction map restricts to a injective morphism

ψ : E
(
Ĉ (C`)P

)
[`]→ Ens (C) ,

which is Galois equivariant.

If τ ∈ Gal
(
Ĉ (C`)P/Ĉ (B)Q

)
, then for all S ∈ E [`]

ψ ◦ τ (S) = τ̃ ◦ ψ (S) = ψ (S) ,

that is τ (S) = S , hence τ = id.

Hence π` is unramified at P.



Topological perspective Algebraic example Family of branched covering spaces Conclusions

Proofs

Case P ∈ C` and π` (P) = O and ` = 2.

The polynomial x3 + ax + b is irreducible over C (B).

Suppose reducible, then it has a zero in C (B) with a pole of
order one at O and regular elsewhere.

The discriminant is a square, so the splitting field has degree
at most three.

Since the Galois group G2
∼= Z/3Z is abelian, then

π2 : C` → B

is unramified at P.

The curve C2 again has genus one.
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Proofs

Case P ∈ C` and π` (P) = O and ` ≥ 3.

Let π be an uniformizer at O, then
E : y ′2 = x ′3 + π4ax ′ + π6b over C (B) is minimal at O.

Notice that E over C (B) has additive reduction at O.

Suppose that E over C (C`) also has additive reduction at P,

then define K = Ĉ (C`)P and consider

0→ E0 (K )→ E (K )→ E (K ) /E0 (K )→ 0

and the reduction map E0 (K )→ E (C) ∼= (C,+), so that

Z/`Z× Z/`Z ∼= E [`] ↪→ E (K ) /E0 (K ) ,

but this is impossible for l ≥ 3. Therefore E over C (C`) has
multiplicative reduction at P.

Hence π` is ramified at P.
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Proofs

Case P ∈ C` and π` (P) = O and ` = 3.

The 2-Sylow subgroup of SL2 (Z/3Z) contains G`, and is
isomorphic to the quaternion group {±1,±i ,±j ,±k}.
Since π3 is ramified, then G` is non-abelian, hence G` is the
2-Sylow subgroup.

Let H = {±1} and consider

C (B) −→ C (C`)
H −→ C (C`) .

The eπ3 (P) = 2, because G`/H is abelian.

Hence the genus of C` is three.
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Proofs

Case P ∈ C` and π` (P) = O and ` > 3.

If E ′ is defined over C (t) and j (E ′) = t, then

Gal
(
C (t)

(
E ′ [`]

)
/C (t)

) ∼= SL2 (Z/`Z) .

Define

E ′ : y2 = x3 − 27t

t − 1728
x − 54t

t − 1728

over C (t). It has j (E ′) = t.

Let t = j (E ) = 6912a3, then

− 27t

t − 1728
=

(
2a

b

)2

a and − 54t

t − 1728
=

(
2a

b

)3

b.

Thus E and E ′ are isomorphic over C (a, b, c) for c2 = 2a
b .

Hence C (a, b, c ,E [`]) = C (a, b, c ,E ′ [`]).
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Proofs

C (t,E ′ [`])

??
C (a,E ′ [`])

??
C (a, b,E ′ [`])

??
C (a, b, c ,E [`])

C (t)
SL2(Z/`Z)

__

Z/3Z

??
C (a)

G

__

Z/2Z

??
C (a, b)

G ′

__

G`

??
C (a, b,E [`])

__

Since SL2 (Z/`Z) has no normal subgroups of index 2 and 3,
then

G` ∼= SL2 (Z/`Z) .
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Proofs

Define an uniformizer π = 2a
b at O.

Consider E : y2 = x3 + ax + b over C ((π)).

Compute

a = π−2
(
−27 + b−2

)
and b = π−3

(
−54 + 2b−3

)
The curve E is equivalent to

E : y2 = x3 +
(
−27 + b−2

)
x +

(
−54 + 2b−3

)
over C ((c)) with c2 = 2a

b . Note that ∆ = c12.

Indeed E has multiplicative reduction modulo c

E : y2 = x3 − 27x − 54 = (x + 3)2 (x − 6) .
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Proofs

Consider

C ((π)) (E [`])

??
C ((c)) (E [`])

C ((π))

__ ??
C ((c))

__

In fact C ((π)) (E [`]) = C ((c)) (E [`]), because

Recall E has multiplicative reduction over C ((π)) (E [`]).
The coefficient a transforms as au4 for some u.
Multiplicative reduction requires

0 = v
(
u4a
)

= 4v (u)− v (a) = 4v (u)− 2e

with e the ramification index. Therefore e is be even.
Hence c ∈ C ((π)) (E [`]).
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Proofs

Use the theory of the Tate curve.

There is a q ∈ C ((c)) such that for every finite L/C ((c))
there exists a Galois equivariant isomorphism

L∗/qZ → E (L) .

Moreover v (q) = v (∆) = 12.

Hence C ((c)) (E [`]) = C ((c))
(√̀

q
)

= C
((√̀

c
))

.

The ramification index of π` at P is 2`.

Compute the genus

g (C`) = 1 +

(
`2 − 1

)
(2`− 1)

4
.
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Intermediate coverings

Let ` > 3. Adjoin all x-coordinates of points of order ` to C (B).

Denote this curve by D`, then

C` −→ D` −→ B.

Notice that C (D`) = C (C`)
H for H = {±1}.

Let Q ∈ D` be a point above O.

The ramification index of D` → B at Q is `, because

it is either ` or 2`, and
there is no cyclic subgroup of order 2` in PSL2 (Z/`Z).

So the genus of D` is

g (D`) = 1 +

(
`2 − 1

)
(`− 1)

4
.
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Intermediate coverings

Let ` > 3. Adjoin the x , y -coordinates of one point of order `.

In this case the curve has
`−1
2 points above O with ramification index 2, and

`−1
2 points above O with ramification index 2`.

The curve has genus

1 +
` (`− 1)

2
.

Let ` > 3. Adjoin the x-coordinate of one point of order `.

This curve has
`−1
2 unramified points above O, and

`−1
2 points above O with ramification index `.

So the genus is

1 +
(`− 1)2

4
.
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Using algebraic topology determined a condition on when a
branched covering space of the torus is ramified or not.

Given examples of ramified branched covering spaces of the
torus via topology, and their algebraic analoges.

Constructed a family of branched covering spaces of
4a3 + 27b2 = 1 and computed the Galois group, the
ramification indices and the genus.
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