Topological perspective 000

Algebraic example 0000 Family of branched covering spaces

Conclusions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Covering spaces of an elliptic curve that ramify in precisely one point

Ane Anema

18 July 2013

Topological perspective 000

Algebraic example

Family of branched covering spaces 000000000000

Conclusions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

- 2 Algebraic example
- 3 Family of branched covering spaces

4 Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Family of branched covering spaces 00000000000

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Branch condition

• Let \tilde{S} and \tilde{T} be the universal covering spaces of S and T.

Theorem

Let $H \subset \pi(S)$ be a subgroup and $Y \to T$ be the analytic continuation of $\tilde{S}/H \to S$. Then

 $Y \rightarrow T$ unramified \iff H normal, $\pi(S)/H$ abelian.

- A covering space of the torus is normal and its group of deck transformations is abelian.
- Consider

Topological perspective ○○●	Algebraic example 0000	Family of branched covering spaces	Conclusions
Example			

- Let a, b be generators of $\pi(S)$.
- Define $\phi: \langle a, b \rangle \rightarrow S_3$ as

$$a\mapsto (12)$$
 and $b\mapsto (23)$.

- Consider $X \rightarrow S$ corresponding to $H = \ker \phi$, which
 - has six sheets,
 - can be analytically continued to $Y \rightarrow T$, and
 - has $\pi(S)/H \cong S_3$.
- Let $X' \to S$ correspond to $H' = \phi^{-1}(\langle (12) \rangle)$, then
 - has three sheets,
 - can be analytically continued to Y' o T, and
 - H' is not normal.

Topological perspective	Algebraic example •000	Family of branched covering spaces	Conclusions
The algebraic analog			

- Let k be an algebraically closed field of char $k \neq 2, 3$.
- Consider the elliptic curve

$$E: y^2 = x^3 - 2ax^2 + (a^2 - 4b)x$$

over k with $a, b \in k$ such that $b \neq 0$ and $a^2 \neq 4b$.

• The idea is as follows

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Topological perspective	Algebraic example 0●00	Family of branched covering spaces	Conclusions
The algebraic analog			

• Consider the elliptic curve over k

$$E': \eta^2 = \xi^3 + a\xi^2 + b\xi.$$

• Let $\phi: E' \to E$ be an isogeny of degree two such that

$$\ker \phi = \left\{ O', \, T' \right\},\,$$

where $T' = (0,0) \in E'$ is a point of order two.

• Write C for the curve that corresponds to the splitting field of

$$F = X^3 - \xi \in k(E')[X]$$

and $\chi: C \to E'$ for the morphism induced by $k(E') \subset k(C)$.

Topological	perspective

Conclusions

The algebraic analog

• Since the coordinate function ξ has

$$\operatorname{div} \xi = 2T' - 2O',$$

then $\chi: C \to E'$ branches only above O' and T', where it has ramification index three.

• Choose the isogeny $\phi: {\cal E}' \to {\cal E}$ as

$$(\xi,\eta) \longmapsto \left(\frac{\eta^2}{\xi^2}, \frac{\eta(b-\xi^2)}{\xi^2}\right)$$

- So $k(E') = k(E)(\xi)$ and k(C) = k(E)(s), where $s^3 = \xi$.
- Extension k(C) of k(E) is Galois with

$$\mathsf{Gal}\left(k\left(C\right)/k\left(E\right)\right)\cong S_{3}$$

because s has minimum polynomial $X^6 + (a - x)X^3 + b$

$$(X-s)\left(X-s^{2}\right)\left(X-s^{3}\right)\left(X-\frac{\sqrt[3]{b}}{s}\right)\left(X-\frac{\sqrt[3]{b}}{s^{2}}\right)\left(X-\frac{\sqrt[3]{b}}{s^{3}}\right)$$

Topological 000	perspective
The algebra	ic analog

Family of branched covering spaces 000000000000

Conclusions

• Let *D* be the curve with function field $k(C)^{\{id,\tau\}}$.

Theorem

The curve D is given by the equation

$$\beta^2 = \left(\alpha^3 - 3c\alpha + a
ight) \left(\alpha^2 - 4c
ight)$$

and has genus two.

Theorem

The inclusion $k(E) \rightarrow k(D)$ corresponds to a morphism $\rho: D \rightarrow E$ given by

$$(lpha,eta)\longmapsto\left(lpha^{3}-3m{c}lpha+m{a},-eta\left(lpha^{2}-m{c}
ight)
ight)$$

and ramifies only at infinity on *D*. At that point the ramification index is three.

Topological perspective	Algebraic example 0000	Family of branched covering spaces ●○○○○○○○○○○○	Conclusions
The construction			

 $\bullet\,$ Consider the following elliptic curve over $\mathbb C$

$$B: 4a^3 + 27b^2 = 1$$

with unit element O.

• Also consider the elliptic curve over $\mathbb{C}(B)$ defined by

$$E: y^2 = x^3 + ax + b.$$

- Let ℓ be a prime number.
- Since C (B) (E [ℓ]) is a finite extension of C (B), then it is a function field of a curve Cℓ over C.
- The inclusion of function fields induces a morphism

$$\pi_{\ell}: C_{\ell} \to B.$$

Topological perspective 000

Results

Algebraic example

Family of branched covering spaces

Conclusions

Theorem

The morphism $\pi_{\ell}: C_{\ell} \to B$ is Galois.

Theorem

Let $P \in C_{\ell}$. If $\pi_{\ell}(P) \neq O$, then π_{ℓ} is unramified at P.

Theorem

Let
$$P \in C_{\ell}$$
. If $\pi_{\ell}(P) = O$, then

- π_2 is unramified at P,
- π_3 is ramified at P with $e_{\pi_3}(P) = 2$,
- π_{ℓ} is ramified at P for $\ell > 3$ with $e_{\pi_{\ell}}(P) = 2\ell$.
- Notice that G_ℓ = Gal (C (C_ℓ)/C (B)) is a subgroup of SL₂ (Z/ℓZ).

Conclusions

Proofs

Case $P \in C_{\ell}$ and $\pi_{\ell}(P) = Q \neq O$.

- Notice that $E: y^2 = x^3 + ax + b$ over $\mathbb{C}(C_\ell)$ is minimal at P.
- The extension $\widehat{\mathbb{C}(\mathcal{C}_{\ell})_{P}}/\widehat{\mathbb{C}(B)}_{Q}$ is also Galois.
- The $e_{\pi_{\ell}}(P)$ is equal to the degree of this extension.
- The reduction map restricts to a injective morphism

$$\psi: E\left(\widehat{\mathbb{C}(\mathcal{C}_{\ell})}_{P}\right)[\ell] \to \overline{E}_{ns}(\mathbb{C}),$$

which is Galois equivariant.

• If
$$\tau \in \text{Gal}\left(\widehat{\mathbb{C}(C_{\ell})}_{P}/\widehat{\mathbb{C}(B)}_{Q}\right)$$
, then for all $S \in E[\ell]$
 $\psi \circ \tau(S) = \tilde{\tau} \circ \psi(S) = \psi(S)$,

that is $\tau(S) = S$, hence $\tau = id$.

• Hence π_{ℓ} is unramified at *P*.

Topological perspective	Algebraic example 0000	Family of branched covering spaces	Conclusions
Proofs			

Case
$$P \in C_{\ell}$$
 and $\pi_{\ell}(P) = O$ and $\ell = 2$.

- The polynomial $x^3 + ax + b$ is irreducible over $\mathbb{C}(B)$.
 - Suppose reducible, then it has a zero in $\mathbb{C}(B)$ with a pole of order one at O and regular elsewhere.
- The discriminant is a square, so the splitting field has degree at most three.
- \bullet Since the Galois group ${\it G}_2\cong \mathbb{Z}/3\mathbb{Z}$ is abelian, then

$$\pi_2: C_\ell \to B$$

is unramified at P.

• The curve C_2 again has genus one.

Case $P \in C_{\ell}$ and $\pi_{\ell}(P) = O$ and $\ell \geq 3$.

- Let π be an uniformizer at O, then $E: {y'}^2 = {x'}^3 + \pi^4 a x' + \pi^6 b$ over $\mathbb{C}(B)$ is minimal at O.
- Notice that E over $\mathbb{C}(B)$ has additive reduction at O.
- Suppose that E over $\mathbb{C}(C_{\ell})$ also has additive reduction at P, then define $K = \widehat{\mathbb{C}(C_{\ell})}_P$ and consider

$$0\rightarrow E_{0}\left(K\right)\rightarrow E\left(K\right)\rightarrow E\left(K\right)/E_{0}\left(K\right)\rightarrow 0$$

and the reduction map $E_0(\mathcal{K}) \to \overline{E}(\mathbb{C}) \cong (\mathbb{C}, +)$, so that

$$\mathbb{Z}/\ell\mathbb{Z}\times\mathbb{Z}/\ell\mathbb{Z}\cong E\left[\ell\right]\hookrightarrow E\left(K\right)/E_{0}\left(K\right),$$

but this is impossible for $l \ge 3$. Therefore E over $\mathbb{C}(C_{\ell})$ has multiplicative reduction at P.

• Hence π_{ℓ} is ramified at *P*.

Topological perspective	Algebraic example 0000	Family of branched covering spaces	Conclusions
Proofs			

Case
$$P \in C_{\ell}$$
 and $\pi_{\ell}(P) = O$ and $\ell = 3$.

- The 2-Sylow subgroup of SL₂ (ℤ/3ℤ) contains G_ℓ, and is isomorphic to the quaternion group {±1, ±i, ±j, ±k}.
- Since π_3 is ramified, then G_ℓ is non-abelian, hence G_ℓ is the 2-Sylow subgroup.

• Let
$$H = \{\pm 1\}$$
 and consider

$$\mathbb{C}(B) \longrightarrow \mathbb{C}(C_{\ell})^{H} \longrightarrow \mathbb{C}(C_{\ell}).$$

- The $e_{\pi_3}(P) = 2$, because G_{ℓ}/H is abelian.
- Hence the genus of C_{ℓ} is three.

Conclusions

Proofs

Case $P \in C_{\ell}$ and $\pi_{\ell}(P) = O$ and $\ell > 3$. • If E' is defined over $\mathbb{C}(t)$ and j(E') = t, then

 $\operatorname{\mathsf{Gal}}\left(\mathbb{C}\left(t\right)\left(E'\left[\ell\right]\right)/\mathbb{C}\left(t\right)\right)\cong\operatorname{\mathsf{SL}}_{2}\left(\mathbb{Z}/\ell\mathbb{Z}\right).$

Define

$$E': y^2 = x^3 - \frac{27t}{t - 1728}x - \frac{54t}{t - 1728}$$

over $\mathbb{C}(t)$. It has j(E') = t. • Let $t = j(E) = 6912a^3$, then

$$-\frac{27t}{t-1728} = \left(\frac{2a}{b}\right)^2 a \quad \text{and} \quad -\frac{54t}{t-1728} = \left(\frac{2a}{b}\right)^3 b.$$

Thus E and E' are isomorphic over C(a, b, c) for c² = ^{2a}/_b.
Hence C(a, b, c, E[ℓ]) = C(a, b, c, E'[ℓ]).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Topological	perspective

Proofs

Algebraic example

Family of branched covering spaces

Conclusions

• Since SL_2 ($\mathbb{Z}/\ell\mathbb{Z})$ has no normal subgroups of index 2 and 3, then

$$G_{\ell}\cong \mathrm{SL}_{2}\left(\mathbb{Z}/\ell\mathbb{Z}
ight).$$

Topological perspective	Algebraic example 0000	Family of branched covering spaces	Conclusions
Proofs			

- Define an uniformizer $\pi = \frac{2a}{b}$ at O.
- Consider $E: y^2 = x^3 + ax + b$ over $\mathbb{C}((\pi))$.
- Compute

$$a = \pi^{-2} \left(-27 + b^{-2}
ight)$$
 and $b = \pi^{-3} \left(-54 + 2b^{-3}
ight)$

• The curve E is equivalent to

$$E: y^{2} = x^{3} + (-27 + b^{-2}) x + (-54 + 2b^{-3})$$

over $\mathbb{C}((c))$ with $c^2 = \frac{2a}{b}$. Note that $\Delta = c^{12}$.

• Indeed E has multiplicative reduction modulo c

$$\overline{E}$$
: $y^2 = x^3 - 27x - 54 = (x+3)^2 (x-6)$.

Proofs

Algebraic example

Family of branched covering spaces

Conclusions

• Consider

- In fact $\mathbb{C}((\pi))(E[\ell]) = \mathbb{C}((c))(E[\ell])$, because
 - Recall *E* has multiplicative reduction over $\mathbb{C}((\pi))(E[\ell])$.
 - The coefficient *a* transforms as au^4 for some *u*.
 - Multiplicative reduction requires

$$0 = v(u^{4}a) = 4v(u) - v(a) = 4v(u) - 2e$$

with e the ramification index. Therefore e is be even.

• Hence $c \in \mathbb{C}((\pi))(E[\ell])$.

Topological perspective	Algebraic example 0000	Family of branched covering spaces ○○○○○○○○○○	Conclusions
Proofs			

- Use the theory of the Tate curve.
- There is a q ∈ C ((c)) such that for every finite L/C ((c)) there exists a Galois equivariant isomorphism

$$L^*/q^{\mathbb{Z}} \to E(L)$$
.

Moreover $v(q) = v(\Delta) = 12$.

- Hence $\mathbb{C}((c))(E[\ell]) = \mathbb{C}((c))(\sqrt[\ell]{q}) = \mathbb{C}((\sqrt[\ell]{c})).$
- The ramification index of π_{ℓ} at *P* is 2ℓ .
- Compute the genus

$$g(C_{\ell}) = 1 + \frac{(\ell^2 - 1)(2\ell - 1)}{4}.$$

Topological perspective	Algebraic example 0000	Family of branched covering spaces	Conclusions
Intermediate coverings			

Let $\ell > 3$. Adjoin all *x*-coordinates of points of order ℓ to $\mathbb{C}(B)$.

• Denote this curve by D_{ℓ} , then

$$C_\ell \longrightarrow D_\ell \longrightarrow B.$$

- Notice that $\mathbb{C}(D_{\ell}) = \mathbb{C}(C_{\ell})^{H}$ for $H = \{\pm 1\}$.
- Let $Q \in D_{\ell}$ be a point above O.
- The ramification index of $D_\ell o B$ at Q is ℓ , because
 - $\bullet\,$ it is either ℓ or $2\ell,$ and
 - there is no cyclic subgroup of order 2ℓ in $PSL_2(\mathbb{Z}/\ell\mathbb{Z})$.
- So the genus of D_ℓ is

$$g\left(D_{\ell}
ight)=1+rac{\left(\ell^{2}-1
ight)\left(\ell-1
ight)}{4}$$

Topological perspective	Algebraic example 0000	Family of branched covering spaces	Conclusions
Intermediate coverings			

Let $\ell > 3$. Adjoin the *x*, *y*-coordinates of one point of order ℓ .

- In this case the curve has
 - $\frac{\ell-1}{2}$ points above O with ramification index 2, and
 - $\frac{\ell-1}{2}$ points above *O* with ramification index 2ℓ .
- The curve has genus

$$1+\frac{\ell\left(\ell-1\right)}{2}.$$

Let $\ell > 3$. Adjoin the x-coordinate of one point of order ℓ .

- This curve has
 - $\frac{\ell-1}{2}$ unramified points above *O*, and
 - $\frac{\ell-1}{2}$ points above *O* with ramification index ℓ .
- So the genus is

$$1+\frac{(\ell-1)^2}{4}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Topological perspective	Algebraic example 0000	Family of branched covering spaces	Conclusions

- Using algebraic topology determined a condition on when a branched covering space of the torus is ramified or not.
- Given examples of ramified branched covering spaces of the torus via topology, and their algebraic analoges.

• Constructed a family of branched covering spaces of $4a^3 + 27b^2 = 1$ and computed the Galois group, the ramification indices and the genus.