Covering spaces of an elliptic curve that ramify in precisely one point

Ane Anema

6 December 2012

Outline

(1) Topological perspective
(2) Algebraic example
(3) Family of branched covering spaces
(4) Conclusions

$\pi(T) \cong \mathbb{Z} \times \mathbb{Z}$

Punctured torus S

$\pi(S) \cong \mathbb{Z} * \mathbb{Z}$

- Let \tilde{S} and \tilde{T} be the universal covering spaces of S and T.

Theorem

Let $H \subset \pi(S)$ be a subgroup and $Y \rightarrow T$ be the analytic continuation of $\tilde{S} / H \rightarrow S$. Then

$$
Y \rightarrow T \text { unramified } \quad \Longleftrightarrow \quad H \text { normal, } \pi(S) / H \text { abelian. }
$$

- A covering space of the torus is normal and its group of deck transformations is abelian.
- Consider

$$
\tilde{S} \longrightarrow \tilde{S} /[\pi(S), \pi(S)] \longrightarrow S
$$

- Let a, b be generators of $\pi(S)$.
- Define $\phi:\langle a, b\rangle \rightarrow S_{3}$ as

$$
a \mapsto(12) \quad \text { and } \quad b \mapsto(23) .
$$

- Consider $X \rightarrow S$ corresponding to $H=\operatorname{ker} \phi$, which
- has six sheets,
- can be analytically continued to $Y \rightarrow T$, and
- has $\pi(S) / H \cong S_{3}$.
- Let $X^{\prime} \rightarrow S$ correspond to $H^{\prime}=\phi^{-1}(\langle(12)\rangle)$, then
- has three sheets,
- can be analytically continued to $Y^{\prime} \rightarrow T$, and
- H^{\prime} is not normal.
- Let k be an algebraically closed field of char $k \neq 2,3$.
- Consider the elliptic curve

$$
E: y^{2}=x^{3}-2 a x^{2}+\left(a^{2}-4 b\right) x
$$

over k with $a, b \in k$ such that $b \neq 0$ and $a^{2} \neq 4 b$.

- The idea is as follows

- Consider the elliptic curve over k

$$
E^{\prime}: \eta^{2}=\xi^{3}+a \xi^{2}+b \xi
$$

- Let $\phi: E^{\prime} \rightarrow E$ be an isogeny of degree two such that

$$
\operatorname{ker} \phi=\left\{O^{\prime}, T^{\prime}\right\}
$$

where $T^{\prime}=(0,0) \in E^{\prime}$ is a point of order two.

- Write C for the curve that corresponds to the splitting field of

$$
F=X^{3}-\xi \in k\left(E^{\prime}\right)[X]
$$

and $\chi: C \rightarrow E^{\prime}$ for the morphism induced by $k\left(E^{\prime}\right) \subset k(C)$.

- Since the coordinate function ξ has

$$
\operatorname{div} \xi=2 T^{\prime}-2 O^{\prime}
$$

then $\chi: C \rightarrow E^{\prime}$ branches only above O^{\prime} and T^{\prime}, where it has ramification index three.

- Choose the isogeny $\phi: E^{\prime} \rightarrow E$ as

$$
(\xi, \eta) \longmapsto\left(\frac{\eta^{2}}{\xi^{2}}, \frac{\eta\left(b-\xi^{2}\right)}{\xi^{2}}\right)
$$

- So $k\left(E^{\prime}\right)=k(E)(\xi)$ and $k(C)=k(E)(s)$, where $s^{3}=\xi$.
- Extension $k(C)$ of $k(E)$ is Galois with

$$
\operatorname{Gal}(k(C) / k(E)) \cong S_{3},
$$

because s has minimum polynomial $X^{6}+(a-x) X^{3}+b$

$$
(X-s)\left(X-s^{2}\right)\left(X-s^{3}\right)\left(X-\frac{\sqrt[3]{b}}{s}\right)\left(X-\frac{\sqrt[3]{b}}{s^{2}}\right)\left(X-\frac{\sqrt[3]{b}}{s^{3}}\right)
$$

- Let D be the curve with function field $k(C)^{\{i d, \tau\}}$.

Theorem

The curve D is given by the equation

$$
\beta^{2}=\left(\alpha^{3}-3 c \alpha+a\right)\left(\alpha^{2}-4 c\right)
$$

and has genus two.

Theorem

The inclusion $k(E) \rightarrow k(D)$ corresponds to a morphism $\rho: D \rightarrow E$ given by

$$
(\alpha, \beta) \longmapsto\left(\alpha^{3}-3 c \alpha+a,-\beta\left(\alpha^{2}-c\right)\right)
$$

and ramifies only at infinity on D. At that point the ramification index is three.

- Consider the following elliptic curve over \mathbb{C}

$$
B: 4 a^{3}+27 b^{2}=1
$$

with unit element O.

- Also consider the elliptic curve over $\mathbb{C}(B)$ defined by

$$
E: y^{2}=x^{3}+a x+b
$$

- Let ℓ be a prime number.
- Since $\mathbb{C}(B)(E[\ell])$ is a finite extension of $\mathbb{C}(B)$, then it is a function field of a curve C_{ℓ} over \mathbb{C}.
- The inclusion of function fields induces a morphism

$$
\pi_{\ell}: C_{\ell} \rightarrow B
$$

Theorem

The morphism $\pi_{\ell}: C_{\ell} \rightarrow B$ is Galois.

Theorem

Let $P \in C_{\ell}$. If $\pi_{\ell}(P) \neq O$, then π_{ℓ} is unramified at P.

Theorem

Let $P \in C_{\ell}$. If $\pi_{\ell}(P)=O$, then

- π_{2} is unramified at P,
- π_{3} is ramified at P with $e_{\pi_{3}}(P)=2$,
- π_{ℓ} is ramified at P for $\ell>3$ with $e_{\pi_{\ell}}(P)=2 \ell$.
- Notice that $G_{\ell}=\operatorname{Gal}\left(\mathbb{C}\left(C_{\ell}\right) / \mathbb{C}(B)\right)$ is a subgroup of $\mathrm{SL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$.

Case $P \in C_{\ell}$ and $\pi_{\ell}(P)=Q \neq O$.

- Notice that $E: y^{2}=x^{3}+a x+b$ over $\mathbb{C}\left(C_{\ell}\right)$ is minimal at P.
- The extension $\widehat{\mathbb{C}\left(C_{\ell}\right)} \widehat{\mathbb{C}}(B)_{Q}$ is also Galois.
- The $e_{\pi_{\ell}}(P)$ is equal to the degree of this extension.
- The reduction map restricts to a injective morphism

$$
\psi: E\left({\widehat{\mathbb{C}}\left(C_{\ell}\right)_{P}}\right)[\ell] \rightarrow \bar{E}_{\mathrm{ns}}(\mathbb{C})
$$

which is Galois equivariant.

- If $\left.\tau \in \operatorname{Gal}\left(\widehat{\mathbb{C}\left(C_{\ell}\right)}\right)_{P} / \widehat{\mathbb{C}(B)_{Q}}\right)$, then for all $S \in E[\ell]$

$$
\psi \circ \tau(S)=\tilde{\tau} \circ \psi(S)=\psi(S)
$$

that is $\tau(S)=S$, hence $\tau=\mathrm{id}$.

- Hence π_{ℓ} is unramified at P.

Case $P \in C_{\ell}$ and $\pi_{\ell}(P)=O$ and $\ell=2$.

- The polynomial $x^{3}+a x+b$ is irreducible over $\mathbb{C}(B)$.
- Suppose reducible, then it has a zero in $\mathbb{C}(B)$ with a pole of order one at O and regular elsewhere.
- The discriminant is a square, so the splitting field has degree at most three.
- Since the Galois group $G_{2} \cong \mathbb{Z} / 3 \mathbb{Z}$ is abelian, then

$$
\pi_{2}: C_{\ell} \rightarrow B
$$

is unramified at P.

- The curve C_{2} again has genus one.

Case $P \in C_{\ell}$ and $\pi_{\ell}(P)=O$ and $\ell \geq 3$.

- Let π be an uniformizer at O, then $E: y^{\prime 2}=x^{\prime 3}+\pi^{4} a x^{\prime}+\pi^{6} b$ over $\mathbb{C}(B)$ is minimal at O.
- Notice that E over $\mathbb{C}(B)$ has additive reduction at O.
- Suppose that E over $\mathbb{C}\left(C_{\ell}\right)$ also has additive reduction at P, then define $K=\widehat{\mathbb{C}\left(C_{\ell}\right)_{P}}$ and consider

$$
0 \rightarrow E_{0}(K) \rightarrow E(K) \rightarrow E(K) / E_{0}(K) \rightarrow 0
$$

and the reduction map $E_{0}(K) \rightarrow \bar{E}(\mathbb{C}) \cong(\mathbb{C},+)$, so that

$$
\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z} \cong E[\ell] \hookrightarrow E(K) / E_{0}(K)
$$

but this is impossible for $I \geq 3$. Therefore E over $\mathbb{C}\left(C_{\ell}\right)$ has multiplicative reduction at P.

- Hence π_{ℓ} is ramified at P.

Case $P \in C_{\ell}$ and $\pi_{\ell}(P)=O$ and $\ell=3$.

- The 2-Sylow subgroup of $\mathrm{SL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ contains G_{ℓ}, and is isomorphic to the quaternion group $\{ \pm 1, \pm i, \pm j, \pm k\}$.
- Since π_{3} is ramified, then G_{ℓ} is non-abelian, hence G_{ℓ} is the 2-Sylow subgroup.
- Let $H=\{ \pm 1\}$ and consider

$$
\mathbb{C}(B) \longrightarrow \mathbb{C}\left(C_{\ell}\right)^{H} \longrightarrow \mathbb{C}\left(C_{\ell}\right)
$$

- The $e_{\pi_{3}}(P)=2$, because G_{ℓ} / H is abelian.
- Hence the genus of C_{ℓ} is three.

Case $P \in C_{\ell}$ and $\pi_{\ell}(P)=O$ and $\ell>3$.

- If E^{\prime} is defined over $\mathbb{C}(t)$ and $j\left(E^{\prime}\right)=t$, then

$$
\operatorname{Gal}\left(\mathbb{C}(t)\left(E^{\prime}[\ell]\right) / \mathbb{C}(t)\right) \cong \mathrm{SL}_{2}(\mathbb{Z} / \ell \mathbb{Z})
$$

- Define

$$
E^{\prime}: y^{2}=x^{3}-\frac{27 t}{t-1728} x-\frac{54 t}{t-1728}
$$

over $\mathbb{C}(t)$. It has $j\left(E^{\prime}\right)=t$.

- Let $t=j(E)=6912 a^{3}$, then

$$
-\frac{27 t}{t-1728}=\left(\frac{2 a}{b}\right)^{2} a \quad \text { and } \quad-\frac{54 t}{t-1728}=\left(\frac{2 a}{b}\right)^{3} b .
$$

- Thus E and E^{\prime} are isomorphic over $\mathbb{C}(a, b, c)$ for $c^{2}=\frac{2 a}{b}$.
- Hence $\mathbb{C}(a, b, c, E[\ell])=\mathbb{C}\left(a, b, c, E^{\prime}[\ell]\right)$.

- Since $\mathrm{SL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$ has no normal subgroups of index 2 and 3 , then

$$
G_{\ell} \cong S L_{2}(\mathbb{Z} / \ell \mathbb{Z}) .
$$

- Define an uniformizer $\pi=\frac{2 a}{b}$ at O.
- Consider $E: y^{2}=x^{3}+a x+b$ over $\mathbb{C}((\pi))$.
- Compute

$$
a=\pi^{-2}\left(-27+b^{-2}\right) \quad \text { and } \quad b=\pi^{-3}\left(-54+2 b^{-3}\right)
$$

- The curve E is equivalent to

$$
E: y^{2}=x^{3}+\left(-27+b^{-2}\right) x+\left(-54+2 b^{-3}\right)
$$

over $\mathbb{C}((c))$ with $c^{2}=\frac{2 a}{b}$. Note that $\Delta=c^{12}$.

- Indeed E has multiplicative reduction modulo c

$$
\bar{E}: y^{2}=x^{3}-27 x-54=(x+3)^{2}(x-6)
$$

- Use the theory of the Tate curve.
- There is a $q \in \mathbb{C}((c))$ such that for every finite $L / \mathbb{C}((c))$ there exists a Galois equivariant isomorphism

$$
L^{*} / q^{\mathbb{Z}} \rightarrow E(L)
$$

Moreover $v(q)=v(\Delta)=12$.

- Hence $\mathbb{C}((c))(E[\ell])=\mathbb{C}((c))(\sqrt[\ell]{q})$.
- Consider

- In fact $\mathbb{C}((\pi))(E[\ell])=\mathbb{C}((c))(E[\ell])$, because
- Recall E has multiplicative reduction over $\mathbb{C}((\pi))(E[\ell])$.
- The coefficient a transforms as au for some u.
- Multiplicative reduction requires

$$
0=v\left(u^{4} a\right)=4 v(u)-v(a)=4 v(u)-2 e
$$

with e the ramification index. Therefore e is be even.

- Hence $c \in \mathbb{C}((\pi))(E[\ell])$.
- The ramification index of π_{ℓ} at P is 2ℓ.
- Compute the genus

$$
g\left(C_{\ell}\right)=1+\frac{\left(\ell^{2}-1\right)(2 \ell-1)}{4}
$$

Let $\ell>3$. Adjoin all x-coordinates of points of order ℓ to $\mathbb{C}(B)$.

- Denote this curve by D_{ℓ}, then

$$
C_{\ell} \longrightarrow D_{\ell} \longrightarrow B
$$

- Notice that $\mathbb{C}\left(D_{\ell}\right)=\mathbb{C}\left(C_{\ell}\right)^{H}$ for $H=\{ \pm 1\}$.
- Let $Q \in D_{\ell}$ be a point above O.
- The ramification index of $D_{\ell} \rightarrow B$ at Q is ℓ, because
- it is either ℓ or 2ℓ, and
- there is no cyclic subgroup of order 2ℓ in $\mathrm{PSL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$.
- So the genus of D_{ℓ} is

$$
g\left(D_{\ell}\right)=1+\frac{\left(\ell^{2}-1\right)(\ell-1)}{4}
$$

Let $\ell>3$. Adjoin the x, y-coordinates of one point of order ℓ.

- In this case the curve has
- $\frac{\ell-1}{2}$ points above O with ramification index 2 , and
- $\frac{\ell-1}{2}$ points above O with ramification index 2ℓ.
- The curve has genus

$$
1+\frac{\ell(\ell-1)}{2}
$$

Let $\ell>3$. Adjoin the x-coordinate of one point of order ℓ.

- This curve has
- $\frac{\ell-1}{2}$ unramified points above O, and
- $\frac{\ell-1}{2}$ points above O with ramification index ℓ.
- So the genus is

$$
1+\frac{(\ell-1)^{2}}{4}
$$

- Using algebraic topology determined a condition on when a branched covering space of the torus is ramified or not.
- Given examples of ramified branched covering spaces of the torus via topology, and their algebraic analoges.
- Constructed a family of branched covering spaces of $4 a^{3}+27 b^{2}=1$ and computed the Galois group, the ramification indices and the genus.

