Field extensions over which an elliptic curve reaches the Hasse bound

Ane Anema

9 November 2012

Outline

(1) Introduction
(2) Case q square
(3) Case q not a square

4 Conclusions

Theorem (Hasse)

Let E be an elliptic curve defined over \mathbb{F}_{q}. Then

$$
\left|\# E\left(\mathbb{F}_{q}\right)-q-1\right| \leq\lfloor 2 \sqrt{q}\rfloor .
$$

Definition

If E is an elliptic curve defined over \mathbb{F}_{q} and

$$
\# E\left(\mathbb{F}_{q}\right)=q+1+\lfloor 2 \sqrt{q}\rfloor,
$$

then E is called maximal over \mathbb{F}_{q}.

- Given an elliptic curve E defined over \mathbb{F}_{q}, is there a field extension $\mathbb{F}_{q^{n}}$ over which E becomes maximal?

Theorem

If E is an elliptic curve defined over \mathbb{F}_{q}, then

$$
\# E\left(\mathbb{F}_{q^{n}}\right)=q^{n}+1-a_{n}
$$

for all $n \in \mathbb{Z}_{>0}$, where $a_{n}=\alpha^{n}+\bar{\alpha}^{n}$ and α is a zero of

$$
X^{2}-a_{1} X+q
$$

- Given a prime power q and an integer a_{1} such that $\left|a_{1}\right| \leq 2 \sqrt{q}$, is $-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor$ for some $n \in \mathbb{Z}_{>0}$?

Proposition (Doetjes)

Let q be a prime power and $\left|a_{1}\right| \leq 2 \sqrt{q}$. If q is a square, then

$$
-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor
$$

for some $n \in \mathbb{Z}_{>0}$ if and only if

$$
a_{1} \in\{0, \sqrt{q},-2 \sqrt{q}\} .
$$

- Define $\beta=\frac{\alpha}{|\alpha|}=\frac{\alpha}{\sqrt{q}}=\frac{\sqrt{q}}{\bar{\alpha}}$.
- Notice that

$$
\begin{aligned}
a_{n}+\left\lfloor 2 \sqrt{q^{n}}\right\rfloor & =a_{n}+2 \sqrt{q^{n}} \\
& =\alpha^{n}+\bar{\alpha}^{n}+2 \sqrt{q^{n}} \\
& =\bar{\alpha}^{n}\left(\beta^{2 n}+1+2 \beta^{n}\right) \\
& =\bar{\alpha}^{n}\left(\beta^{n}+1\right)^{2} .
\end{aligned}
$$

- Since $\alpha \neq 0$, then

$$
-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor \quad \Longleftrightarrow \quad \beta^{n}+1=0 .
$$

Lemma

Let q be any prime power and β be a zero of $X^{2}-\frac{a_{1}}{\sqrt{q}} X+1$. Then $\beta^{n}+1=0$ for some $n \in \mathbb{Z}_{>0}$ if and only if

$$
a_{1} \in\{0, \sqrt{q}, \pm \sqrt{2 q}, \pm \sqrt{3 q},-2 \sqrt{q}\} .
$$

- $\beta^{n}+1=0$ for some $n \in \mathbb{Z}_{>0}$ is the same as β is a primitive root of unity of even order.
- Denote $d=[\mathbb{Q}(\beta): \mathbb{Q}]$.
- $d=\varphi(m)$ for β a m-th primitive root of unity.
- $d \in\{1,2,4\}$.

d	$\varphi^{-1}(d) \cap 2 \mathbb{Z}$	minimum polynomial of β
1	2	$X+1$
2	4	$X^{2}+1$
	6	$X^{2}-X+1$
4	8	$X^{4}+1$
	10	$X^{4}-X^{3}+X^{2}-X+1$
	12	$X^{4}-X^{2}+1$

- Case $d=1$:
- $X^{2}-\frac{a_{1}}{\sqrt{q}} X+1$ reducible over $\mathbb{Q}(\sqrt{q})$,
- so $a_{1}{ }^{2}=4 q$ and

$$
X^{2}-\frac{a_{1}}{\sqrt{q}} X+1=\left(X-\frac{a_{1}}{2 \sqrt{q}}\right)^{2}
$$

- Hence β even primitive root of unity if and only if $a_{1}=-2 \sqrt{q}$.

d	$\varphi^{-1}(d) \cap 2 \mathbb{Z}$	minimum polynomial of β
1	2	$X+1$
2	4	$X^{2}+1$
	6	$X^{2}-X+1$
4	8	$X^{4}+1$
	10	$X^{4}-X^{3}+X^{2}-X+1$
	12	$X^{4}-X^{2}+1$

- Case $d=2$:
- $X^{2}-\frac{a_{1}}{\sqrt{q}} X+1$ irreducible over $\mathbb{Q}(\sqrt{q})$,
- otherwise $a_{1}{ }^{2}=4 q$ and the polynomial is reducible over \mathbb{Q}.
- Notice that $\sqrt{q} \in \mathbb{Q}$.
- Hence β even primitive root of unity if and only if $a_{1}=0$ or $a_{1}=\sqrt{q}$.

d	$\varphi^{-1}(d) \cap 2 \mathbb{Z}$	minimum polynomial of β
1	2	$X+1$
2	4	$X^{2}+1$
	6	$X^{2}-X+1$
4	8	$X^{4}+1$
	10	$X^{4}-X^{3}+X^{2}-X+1$
	12	$X^{4}-X^{2}+1$

- Case $d=4$:
- $X^{2}-\frac{a_{1}}{\sqrt{q}} X+1$ irreducible over $\mathbb{Q}(\sqrt{q})$ and $\sqrt{q} \notin \mathbb{Q}$.
- Minimum polynomial of β over \mathbb{Q} is

$$
x^{4}+\left(2-\frac{a_{1}^{2}}{q}\right) x^{2}+1
$$

- Hence β even primitive root of unity if and only if $a_{1}{ }^{2}=2 q$ or $a_{1}{ }^{2}=3 q$.

Proposition

Let q be a prime power which is not a square, and $a_{1} \in \mathbb{Z}$ such that $\left|a_{1}\right| \leq 2 \sqrt{q}$.
(1) If

$$
a_{1} \in\{0, \pm \sqrt{2 q}, \pm \sqrt{3 q}\}
$$

then $-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor$ for infinitely many $n \in \mathbb{Z}_{>0}$.
(2) If $-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor$ for some $n \in \mathbb{Z}_{>0}$, then either

$$
a_{1} \in\{0, \pm \sqrt{2 q}, \pm \sqrt{3 q}\}
$$

$$
\text { or }-a_{m}=\left\lfloor 2 \sqrt{q^{m}}\right\rfloor \text { for only finitely many } m \in \mathbb{Z}_{>0} \text {. }
$$

Corollary

Let E be an elliptic curved defined over \mathbb{F}_{q}.

- If E is ordinary, that is $\operatorname{gcd}\left(a_{1}, q\right)=1$, then there are at most finitely many extensions of \mathbb{F}_{q} over which E is maximal.
- If E is supersingular, then E is maximal over infinitely many extensions of \mathbb{F}_{q}, except when

$$
a_{1} \in\{-\sqrt{q}, 2 \sqrt{q}\}
$$

in which case E is never maximal.

- Notice that

$$
-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor \quad \Longleftrightarrow \quad-a_{n} \leq 2 \sqrt{q^{n}}<-a_{n}+1 .
$$

- Define $\beta=\frac{\alpha}{|\alpha|}$ and recall that

$$
a_{n}+2 \sqrt{q^{n}}=\bar{\alpha}^{n}\left(\beta^{n}+1\right)^{2} .
$$

- Since $\left|a_{n}\right| \leq 2 \sqrt{q^{n}}$, then $0 \leq a_{n}+2 \sqrt{q^{n}}$, so that

$$
\begin{aligned}
-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor & \Longleftrightarrow\left|a_{n}+2 \sqrt{q^{n}}\right|<1 \\
& \Longleftrightarrow\left|\beta^{n}+1\right|<\frac{1}{\sqrt[4]{q^{n}}}
\end{aligned}
$$

Lemma

Let q be any prime power and β be a zero of $X^{2}-\frac{a_{1}}{\sqrt{q}} X+1$. Then $\beta^{n}+1=0$ for some $n \in \mathbb{Z}_{>0}$ if and only if

$$
a_{1} \in\{0, \sqrt{q}, \pm \sqrt{2 q}, \pm \sqrt{3 q},-2 \sqrt{q}\} .
$$

(1) If

$$
a_{1} \in\{0, \pm \sqrt{2 q}, \pm \sqrt{3 q}\},
$$

then $-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor$ for infinitely many $n \in \mathbb{Z}_{>0}$.
(c) Suppose $-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor$ for some $n \in \mathbb{Z}_{>0}$.

- If β is a root of unity of even order, then

$$
a_{1} \in\{0, \pm \sqrt{2 q}, \pm \sqrt{3 q}\} .
$$

- Assume β is not a root of unity of even order.
- Then

$$
0<\left|\beta^{n}+1\right|<\frac{1}{\sqrt[4]{q^{n}}}
$$

- Recall that for all $|z|<1$

$$
-\log (1-z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k} \quad \text { and } \quad \sum_{k=0}^{\infty} z^{k}=\frac{1}{1-z}
$$

- If $|z|<c<1$, then

$$
|\log (1-z)|=\left|\sum_{k=1}^{\infty} \frac{z^{k}}{k}\right| \leq \sum_{k=1}^{\infty} c^{k}=\frac{c}{1-c}
$$

- Hence $\left|\beta^{n}+1\right|<\frac{1}{\sqrt[4]{q^{n}}}$ implies

$$
\left|\log \left(-\beta^{n}\right)\right| \leq \frac{1}{\sqrt[4]{q^{n}}-1}
$$

- Notice that -1 and β are multiplicatively independent:
- $-\beta^{m} \neq 1$ for all $m \in \mathbb{Z}$ by assumption, and
- $+\beta^{m} \neq 1$ for all $m \in \mathbb{Z}$ else β a 5-th primitive root of unity.

Lemma (Special case of Baker's theorem)

Let β be an algebraic number. If -1 and β are multiplicatively independent, then

$$
\left|\log \left(-\beta^{n}\right)\right|>n^{-c \log (h)}
$$

for all $n \in \mathbb{Z}_{\geq 4}$, where

- $h \in \mathbb{Z}_{\geq 4}$ is an upper bound on the height of β and
- $c \in \mathbb{R}_{>0}$ which depends only on $[\mathbb{Q}(\beta): \mathbb{Q}]$.
- Therefore

$$
n^{-c \log (h)}<\left|\log \left(-\beta^{n}\right)\right| \leq \frac{1}{\sqrt[4]{q^{n}}-1} \leq \frac{1}{d \sqrt[4]{q^{n}}}
$$

for some $d \in \mathbb{R}_{>0}$, that is

$$
d \sqrt[4]{q^{n}}<n^{c \log (h)}
$$

- Hence n must be smaller than some constant.

Proposition

Let q be a prime power which is not a square, $a_{1} \in \mathbb{Z}$ such that $\left|a_{1}\right| \leq 2 \sqrt{q}$

$$
a_{1} \notin\{0, \pm \sqrt{2 q}, \pm \sqrt{3 q}\}
$$

and $n \in \mathbb{Z}_{>0}$ such that $-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor$.

- If $q>e^{2 \pi}$, then $n \leq 85621$.
- If $112 \leq q \leq e^{2 \pi}$, then

$$
n<\frac{54507.6 \pi^{2}}{\log q}+1
$$

- If $q \leq 111$, then n smaller than the largest zero of

$$
x \mapsto \frac{x-1}{4} \log q-30.9 \pi^{2}\left(2 \log \left(\frac{x+1}{\pi}\right)\right)^{2}
$$

Lemma (Special case of results by M. Laurent et al.)

Let β be an algebraic number with $|\beta|=1$. If -1 and β are multiplicative independent, then

$$
\log \left|\log \left(-\beta^{n}\right)\right| \geq-30.9 \pi c \max \left\{d \log \left(\frac{n}{\pi}+\frac{1}{c}\right), 21, \frac{d}{2}\right\}^{2}
$$

for all $n \in \mathbb{Z}_{>0}$, where $c=\max \{d I, \pi\}$ with I an upper bound on the logarithmic height of β and $d=\frac{[\mathbb{Q}(\beta): \mathbb{Q}]}{[\mathbb{R}(\beta): \mathbb{R}]}$.

- Recall that $X^{4}+\left(2-\frac{a_{1}{ }^{2}}{q}\right) X^{2}+1$ minimum polynomial of β over \mathbb{Q}. Other roots are $-\beta$ and $\pm \bar{\beta}$. So $I=\frac{1}{4} \log q$.
- Notice that $X^{2}-\frac{a_{1}}{\sqrt{q}} X+1$ is irreducible over \mathbb{R}, so $d=2$.
- Compute solutions of

$$
-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor
$$

with the help of continued fractions.

- Write $\alpha=\sqrt{q} e^{i \theta}$ for some $\theta \in[0, \pi]$, then

$$
a_{n}=2 \sqrt{q^{n}} \cos (n \theta)
$$

Proposition (Doetjes)

If $-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor$ for some $n \in \mathbb{Z}_{>0}$, then for some odd $m \in \mathbb{Z}$

$$
\left|\frac{\theta}{\pi}-\frac{m}{n}\right|<\frac{1}{\pi} \sqrt{\frac{48}{48-\pi^{2}}} \frac{1}{n q^{\frac{n}{4}}} .
$$

- Notice that if $a_{1} \notin\{0, \pm \sqrt{2 q}, \pm \sqrt{3 q}\}$, then $\frac{\theta}{\pi} \notin \mathbb{Q}$.
- Recall that if $\left|\frac{\theta}{\pi}-\frac{m}{n}\right|<\frac{1}{2 n^{2}}$, then $\frac{m}{n}$ is a convergent of $\frac{\theta}{\pi}$.

Corollary
Let $q>2$ or $n>12$. If $-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor$ for some $n \in \mathbb{Z}_{>0}$, then $\frac{m}{n}$ is a convergent of $\frac{\theta}{\pi}$ for some odd $m \in \mathbb{Z}$.

- Determined the solutions to $-a_{n}=\left\lfloor 2 \sqrt{q^{n}}\right\rfloor$ for all prime powers $q \leq 26759$ and $a_{1} \notin\{0, \pm \sqrt{2 q}, \pm \sqrt{3 q},-\lfloor 2 \sqrt{q}\rfloor\}$.
- There are 378 solutions.
- Only two cases in which $n \neq 3,5$ occurs, namely

q	a_{1}	n
2	1	13
5	1	7

- The case $n=5$ appears 12 times, namely

q	a_{1}
2	-1
3	-1
11	-2
23	-3
31	9
128	-7

q	a_{1}
317	-11
2851	-33
8807	-58
10391	-63
10399	165
22159	-92

- Expanded results in the case that q is not a square.
- Determined when an elliptic curve over \mathbb{F}_{q} is maximal over infinitely many extensions of \mathbb{F}_{q}, and when it is maximal over at most finitely many extensions.
- Derived a bound on the degree of the extension in the latter case.
- The results suggest:
- If q is large and a regular elliptic curve defined over \mathbb{F}_{q} is maximal over some extension of \mathbb{F}_{q}, then the degree of the extension is 3 or 5 .
- Infinitely many ordinary elliptic curves exists that are maximal over a degree 3 extension.
- Similar for a degree 5 extension.

