Branched covering spaces of elliptic curves

Family of branched covering spaces

A.S.I. Anema

25 November 2011

Family of branched covering spaces

Outline

- Introduction
- 2 Explicit example
- Family of branched covering spaces
- Conclusions

Equivalent categories

Introduction

Geometry	Algebra
non-singular projective	function field $k(C)$, i.e.
curve <i>C</i>	finite extensions of $k(X)$
surjective morphism $C o D$	inclusion $k(D) \rightarrow k(C)$
	fixing <i>k</i>
point P on C	discrete valuation v_P of $k(C)$

• Ramification index of $\phi: C \to D$ at P on C is

$$e_{\phi}(P) := v_{P}(t_{\phi(P)}).$$

• A branched covering space is a surjective morphism of curves.

Example

Consider $\phi : \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ defined as $\phi(x) = x^2$. This induces $k(Y) \to k(X)$ with $Y \mapsto X^2$. Now

Family of branched covering spaces

$$e_{\phi}(0) = v_0(Y) = v_0(X^2) = 2.$$

- Let k be an algebraically closed field of char $k \neq 2, 3$.
- Consider the elliptic curve

$$E: y^2 = x^3 - 2ax^2 + (a^2 - 4b)x$$

over k with $a, b \in k$ such that $b \neq 0$ and $a^2 \neq 4b$.

The idea is as follows

• Consider the elliptic curve over k

$$E': \eta^2 = \xi^3 + a\xi^2 + b\xi.$$

• Let $\phi: E' \to E$ be an isogeny of degree two such that

$$\ker \phi = \left\{ O', T' \right\},\,$$

where $T' = (0,0) \in E'$ is a point of order two.

• The coordinate function ξ has divisor

$$\text{div } \xi = 2T' - 2O'.$$

• Let C be the curve corresponding to the splitting field of

$$F = X^3 - \xi \in k(E')[X]$$

and $\chi: C \to E'$ the morphism corresponding to the inclusion.

- The morphism $\chi: C \to E'$ branches above O' and T' with ramification index three. It does not branch elsewhere.
- Extension k(C) of k(E) is Galois with

$$Gal(k(C)/k(E)) \cong S_3.$$

- Consider $H = \{id, \tau\} \subset Gal(k(C)/k(E))$.
- Let D be the curve with function field $k(C)^H$.

Theorem

The curve D is given by the equation

$$\beta^2 = \left(\alpha^3 - 3c\alpha + a\right)\left(\alpha^2 - 4c\right)$$

and has genus two.

Theorem

The inclusion $k(E) \rightarrow k(D)$ corresponds to a morphism $\rho: D \rightarrow E$ given by

$$(\alpha, \beta) \longmapsto (\alpha^3 - 3c\alpha + a, -\beta(\alpha^2 - c))$$

and ramifies only at infinity on D. At that point the ramification index is three.

- Let k be an algebraically closed field of char k=0.
- Will construct branched covering spaces of the elliptic curve

$$C: 4a^3 + 27b^2 = 1.$$

- Define K = k(C).
- Consider the elliptic curve over \bar{K}

$$E: y^2 = x^3 + ax + b.$$

- Let p be prime. Define $L_p = K(E[p])$.
- The field L_p corresponds to a curve D_p .
- The inclusion $K \to L_p$ induces a morphism $\psi_p : D_p \to C$.

Family of branched covering spaces

Introduction

$\mathsf{Theorem}$

Let $P \in D_p$. If $\psi_p(P) \neq O_C$, then ψ_p is unramified at P.

$\mathsf{Theorem}$

Let $P \in D_p$ such that $\psi_p(P) = O_C$. Then

- ψ_2 is unramified at P,
- ψ_3 is ramified at P with $e_{\psi_3}(P) = 2$
- and ψ_p is ramified at P for p > 3 with $e_{\psi_p}(P) = 2p$

$\mathsf{Theorem}$

If $k = \mathbb{C}$ and p > 3, then $Gal(L_p/K) \cong SL_2(\mathbb{F}_p)$.

• If E' is defined over $\mathbb{C}(t)$ and j(E') = t, then

$$\mathsf{Gal}\left(\mathbb{C}\left(t,E'\left[p\right]\right)/\mathbb{C}\left(t\right)\right)\cong\mathsf{SL}_{2}\left(\mathbb{F}_{p}\right).$$

Family of branched covering spaces

• Let E' be defined over $\mathbb{C}(t)$ such that $t = j(E) \sim a^3$. Then

- Let $P \in D_p$ be a point. Denote $Q = \psi_p(P)$.
- Complete the discrete valuation rings R_P and R_Q . Then

$$\hat{R}_P\cong k\left[\left[t_P
ight]
ight]$$
 and $\hat{R}_Q\cong k\left[\left[t_Q
ight]
ight]$

with t_P and t_Q uniformizers at P and Q.

- Take the quotient field to obtain \hat{K}_Q and $\hat{L}_{p,P}$.
- ullet The inclusion $R_Q o R_P$ extends to an inclusion $\hat{K}_O o \hat{L}_{n,P}$.

$\mathsf{Theorem}$

In this case
$$\operatorname{\mathsf{Gal}}\left(\hat{\mathsf{L}}_{p,P}/\hat{\mathsf{K}}_Q\right)\cong \mathbb{Z}/n\mathbb{Z}$$
 with $n=e_{\psi_p}(P).$

• If $v_P(a) \ge 0$ and $v_P(b) \ge 0$, then the reduced curve of E is

$$\tilde{E}: \tilde{y}^2 = \tilde{x}^3 + a(P)\tilde{x} + b(P).$$

$\mathsf{Theorem}$

If the reduced curve \tilde{E} is non-singular, then there exists a Galois equivariant group homomorphism $\pi: E\left(\hat{L}_{p,P}\right) o ilde{E}\left(k\right)$. Moreover π restricted to the torsion subgroup is injective.

• If
$$Q = \psi_p(P) \neq O_C$$
 and $\sigma \in \operatorname{Gal}\left(\hat{L}_{p,P}/\hat{K}_Q\right)$, then
$$\pi \circ \sigma(R) = \tilde{\sigma} \circ \pi(R) = \pi(R)$$

for all $R \in E[p]$. Hence $\sigma = id$.

The Tate curve

- Let $P \in D_p$ be such that $\psi_p(P) = O_C$.
- Define $t = \frac{a}{b}$ and $u = \frac{a^3}{b^2}$. Notice that t uniformizer at O_C .

$$E: y^2 = x^3 + ax + b = x^3 + ut^{-2}x + ut^{-3}.$$

- Let M be the splitting field of $X^2 t$ over $\hat{L}_{p,P}$ and $s^2 = t$.
- Change of coordinates $\xi = s^2 x, \eta = s^3 y$ gives

$$E: \eta^2 = \xi^3 + u\xi + u$$

with $\Delta(E) = t^6$ and $j(E) = 1728 \cdot 4 \frac{u^3}{t^6}$.

• Via the Tate curve for some $q \in M$ with $v_M(q) = -v_M(j(E))$

$$E\left(\hat{L}_{p,P}\right)[p]\subset E\left(M\right)[p]\cong E_{q}\left(M\right)[p]\cong \left(M^{*}/q^{\mathbb{Z}}\right)[p]$$
.

• If $z^p = q$ for some $z \in M^*$, then $p \cdot v_M(z) = 6v_M(t)$.

- Let $k = \mathbb{C}$ and p > 3.
- Define $L_{p,x} = K(x(E[p]))$.
- Consider the curve $D_{p,x}$ corresponding to $L_{p,x}$.
- The inclusion $K \to L_{p,x}$ gives $\psi_{p,x} : D_{p,x} \to C$.

$\mathsf{Theorem}$

Let $P \in D_{p,x}$. If $\psi_{p,x}(P) = O_C$, then $\psi_{p,x}$ is ramified at P with ramification index p, else $\psi_{p,x}$ is unramified at P.

Corollary

The genus of $D_{p,x}$ is

$$g_{D_{p,x}} = \frac{1}{4} (p^2 - 1) (p - 1) + 1.$$

- but not with two sheets.
- Saw explicit example with three sheets.
- It is possible to construct a family of such spaces for

$$C: 4a^3 + 27b^2 = 1$$

and derive the

- Galois group,
- ramification indices,
- genus.