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Let k be an algebraically closed field.

Equivalent categories

Geometry Algebra

non-singular projective function field k (C ), i.e.
curve C finite extensions of k (X )

surjective morphism C → D inclusion k (D)→ k (C )
fixing k

point P on C discrete valuation vP of k (C )

Ramification index of φ : C → D at P on C is

eφ (P) := vP
(
tφ(P)

)
.

A branched covering space is a surjective morphism of curves.
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Example

Consider φ : P1 (C)→ P1 (C) defined as φ (x) = x2. This induces
k (Y )→ k (X ) with Y 7→ X 2. Now

eφ (0) = v0 (Y ) = v0
(
X 2

)
= 2.
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The example

Let k be an algebraically closed field of char k 6= 2, 3.

Consider the elliptic curve

E : y2 = x3 − 2ax2 +
(
a2 − 4b

)
x

over k with a, b ∈ k such that b 6= 0 and a2 6= 4b.

The idea is as follows

D

ρ ��

C
λ

��
χ

��

E

E ′

φ��



Introduction Explicit example Family of branched covering spaces Conclusions

The example

Consider the elliptic curve over k

E ′ : η2 = ξ3 + aξ2 + bξ.

Let φ : E ′ → E be an isogeny of degree two such that

ker φ =
{

O ′,T ′
}
,

where T ′ = (0, 0) ∈ E ′ is a point of order two.

The coordinate function ξ has divisor

div ξ = 2T ′ − 2O ′.

Let C be the curve corresponding to the splitting field of

F = X 3 − ξ ∈ k
(
E ′
)

[X ]

and χ : C → E ′ the morphism corresponding to the inclusion.



Introduction Explicit example Family of branched covering spaces Conclusions

The example

The morphism χ : C → E ′ branches above O ′ and T ′ with
ramification index three. It does not branch elsewhere.

Extension k (C ) of k (E ) is Galois with

Gal (k (C ) /k (E )) ∼= S3.

Consider H = {id, τ} ⊂ Gal (k (C ) /k (E )).

Let D be the curve with function field k (C )H .
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The example

Theorem

The curve D is given by the equation

β2 =
(
α3 − 3cα + a

) (
α2 − 4c

)
and has genus two.

Theorem

The inclusion k (E )→ k (D) corresponds to a morphism
ρ : D → E given by

(α, β) 7−→
(
α3 − 3cα + a,−β

(
α2 − c

))
and ramifies only at infinity on D. At that point the ramification
index is three.
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The construction

Let k be an algebraically closed field of char k = 0.

Will construct branched covering spaces of the elliptic curve

C : 4a3 + 27b2 = 1.

Define K = k (C ).

Consider the elliptic curve over K̄

E : y2 = x3 + ax + b.

Let p be prime. Define Lp = K (E [p]).

The field Lp corresponds to a curve Dp.

The inclusion K → Lp induces a morphism ψp : Dp → C .
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Results

Theorem

Let P ∈ Dp. If ψp (P) 6= OC , then ψp is unramified at P.

Theorem

Let P ∈ Dp such that ψp (P) = OC . Then

ψ2 is unramified at P,

ψ3 is ramified at P with eψ3 (P) = 2

and ψp is ramified at P for p > 3 with eψp (P) = 2p

Theorem

If k = C and p > 3, then Gal (Lp/K ) ∼= SL2 (Fp).
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Results

If E ′ is defined over C (t) and j (E ′) = t, then

Gal
(
C
(
t,E ′ [p]

)
/C (t)

) ∼= SL2 (Fp) .

Let E ′ be defined over C (t) such that t = j (E ) ∼ a3. Then

C (t,E ′ [p])

??
C (a,E ′ [p])

??
C (a, b,E ′ [p])

??
C (a, b, c ,E [p])

C (t)
SL2(Fp)

__

Z/3Z

??
C (a)

G1

__

Z/2Z

??
C (a, b)

G2

__

G3

??
C (a, b,E [p])

__
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How to analyse Dp

Let P ∈ Dp be a point. Denote Q = ψp (P).

Complete the discrete valuation rings RP and RQ . Then

R̂P
∼= k [[tP ]] and R̂Q

∼= k [[tQ ]]

with tP and tQ uniformizers at P and Q.

Take the quotient field to obtain K̂Q and L̂p,P .

The inclusion RQ → RP extends to an inclusion K̂Q → L̂p,P .

Theorem

In this case Gal
(

L̂p,P/K̂Q

)
∼= Z/nZ with n = eψp (P).
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The reduction map

If vP (a) ≥ 0 and vP (b) ≥ 0, then the reduced curve of E is

Ẽ : ỹ2 = x̃3 + a (P) x̃ + b (P) .

Theorem

If the reduced curve Ẽ is non-singular, then there exists a Galois

equivariant group homomorphism π : E
(

L̂p,P

)
→ Ẽ (k). Moreover

π restricted to the torsion subgroup is injective.

If Q = ψp (P) 6= OC and σ ∈ Gal
(

L̂p,P/K̂Q

)
, then

π ◦ σ (R) = σ̃ ◦ π (R) = π (R)

for all R ∈ E [p]. Hence σ = id.
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The Tate curve

Let P ∈ Dp be such that ψp (P) = OC .

Define t = a
b and u = a3

b2
. Notice that t uniformizer at OC .

E : y2 = x3 + ax + b = x3 + ut−2x + ut−3.

Let M be the splitting field of X 2 − t over L̂p,P and s2 = t.

Change of coordinates ξ = s2x , η = s3y gives

E : η2 = ξ3 + uξ + u

with ∆ (E ) = t6 and j (E ) = 1728 · 4u3

t6
.

Via the Tate curve for some q ∈ M with vM (q) = −vM (j (E ))

E
(

L̂p,P

)
[p] ⊂ E (M) [p] ∼= Eq (M) [p] ∼=

(
M∗/qZ

)
[p] .

If zp = q for some z ∈ M∗, then p · vM (z) = 6vM (t).
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Additional results

Let k = C and p > 3.

Define Lp,x = K (x (E [p])).

Consider the curve Dp,x corresponding to Lp,x .

The inclusion K → Lp,x gives ψp,x : Dp,x → C .

Theorem

Let P ∈ Dp,x . If ψp,x (P) = OC , then ψp,x is ramified at P with
ramification index p, else ψp,x is unramified at P.

Corollary

The genus of Dp,x is

gDp,x =
1

4

(
p2 − 1

)
(p − 1) + 1.
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Branched covering spaces of a elliptic curve with a single
branch point exist,

but not with two sheets.

Saw explicit example with three sheets.

It is possible to construct a family of such spaces for

C : 4a3 + 27b2 = 1

and derive the

Galois group,
ramification indices,
genus.
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