Branched covering spaces of elliptic curves

A.S.I. Anema

25 November 2011

Outline

(1) Introduction
(2) Explicit example
(3) Family of branched covering spaces
(4) Conclusions

- Let k be an algebraically closed field.

Equivalent categories

Geometry	Algebra
non-singular projective	function field $k(C)$, i.e.
furve C	finite extensions of $k(X)$
surjective morphism $C \rightarrow D$	inclusion $k(D) \rightarrow k(C)$ fixing k
point P on C	discrete valuation v_{P} of $k(C)$

- Ramification index of $\phi: C \rightarrow D$ at P on C is

$$
e_{\phi}(P):=v_{P}\left(t_{\phi(P)}\right) .
$$

- A branched covering space is a surjective morphism of curves.

Example

Consider $\phi: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ defined as $\phi(x)=x^{2}$. This induces $k(Y) \rightarrow k(X)$ with $Y \mapsto X^{2}$. Now

$$
e_{\phi}(0)=v_{0}(Y)=v_{0}\left(X^{2}\right)=2 .
$$

- Let k be an algebraically closed field of char $k \neq 2,3$.
- Consider the elliptic curve

$$
E: y^{2}=x^{3}-2 a x^{2}+\left(a^{2}-4 b\right) x
$$

over k with $a, b \in k$ such that $b \neq 0$ and $a^{2} \neq 4 b$.

- The idea is as follows

- Consider the elliptic curve over k

$$
E^{\prime}: \eta^{2}=\xi^{3}+a \xi^{2}+b \xi
$$

- Let $\phi: E^{\prime} \rightarrow E$ be an isogeny of degree two such that

$$
\operatorname{ker} \phi=\left\{O^{\prime}, T^{\prime}\right\}
$$

where $T^{\prime}=(0,0) \in E^{\prime}$ is a point of order two.

- The coordinate function ξ has divisor

$$
\operatorname{div} \xi=2 T^{\prime}-2 O^{\prime}
$$

- Let C be the curve corresponding to the splitting field of

$$
F=X^{3}-\xi \in k\left(E^{\prime}\right)[X]
$$

and $\chi: C \rightarrow E^{\prime}$ the morphism corresponding to the inclusion.

- The morphism $\chi: C \rightarrow E^{\prime}$ branches above O^{\prime} and T^{\prime} with ramification index three. It does not branch elsewhere.
- Extension $k(C)$ of $k(E)$ is Galois with

$$
\operatorname{Gal}(k(C) / k(E)) \cong S_{3} .
$$

- Consider $H=\{$ id,$\tau\} \subset \operatorname{Gal}(k(C) / k(E))$.
- Let D be the curve with function field $k(C)^{H}$.

Theorem

The curve D is given by the equation

$$
\beta^{2}=\left(\alpha^{3}-3 c \alpha+a\right)\left(\alpha^{2}-4 c\right)
$$

and has genus two.

Theorem

The inclusion $k(E) \rightarrow k(D)$ corresponds to a morphism $\rho: D \rightarrow E$ given by

$$
(\alpha, \beta) \longmapsto\left(\alpha^{3}-3 c \alpha+a,-\beta\left(\alpha^{2}-c\right)\right)
$$

and ramifies only at infinity on D. At that point the ramification index is three.

- Let k be an algebraically closed field of char $k=0$.
- Will construct branched covering spaces of the elliptic curve

$$
C: 4 a^{3}+27 b^{2}=1
$$

- Define $K=k(C)$.
- Consider the elliptic curve over \bar{K}

$$
E: y^{2}=x^{3}+a x+b
$$

- Let p be prime. Define $L_{p}=K(E[p])$.
- The field L_{p} corresponds to a curve D_{p}.
- The inclusion $K \rightarrow L_{p}$ induces a morphism $\psi_{p}: D_{p} \rightarrow C$.

Theorem

Let $P \in D_{p}$. If $\psi_{p}(P) \neq O_{C}$, then ψ_{p} is unramified at P.

Theorem

Let $P \in D_{p}$ such that $\psi_{p}(P)=O_{C}$. Then

- ψ_{2} is unramified at P,
- ψ_{3} is ramified at P with $e_{\psi_{3}}(P)=2$
- and ψ_{p} is ramified at P for $p>3$ with $e_{\psi_{p}}(P)=2 p$

Theorem

If $k=\mathbb{C}$ and $p>3$, then $\operatorname{Gal}\left(L_{p} / K\right) \cong S L_{2}\left(\mathbb{F}_{p}\right)$.

- If E^{\prime} is defined over $\mathbb{C}(t)$ and $j\left(E^{\prime}\right)=t$, then

$$
\operatorname{Gal}\left(\mathbb{C}\left(t, E^{\prime}[p]\right) / \mathbb{C}(t)\right) \cong \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)
$$

- Let E^{\prime} be defined over $\mathbb{C}(t)$ such that $t=j(E) \sim a^{3}$. Then

- Let $P \in D_{p}$ be a point. Denote $Q=\psi_{p}(P)$.
- Complete the discrete valuation rings R_{P} and R_{Q}. Then

$$
\hat{R}_{P} \cong k\left[\left[t_{P}\right]\right] \quad \text { and } \quad \hat{R}_{Q} \cong k\left[\left[t_{Q}\right]\right]
$$

with t_{P} and t_{Q} uniformizers at P and Q.

- Take the quotient field to obtain \hat{K}_{Q} and $\hat{L}_{p, P}$.
- The inclusion $R_{Q} \rightarrow R_{P}$ extends to an inclusion $\hat{K}_{Q} \rightarrow \hat{L}_{p, P}$.

Theorem

In this case $\operatorname{Gal}\left(\hat{L}_{p, P} / \hat{K}_{Q}\right) \cong \mathbb{Z} / n \mathbb{Z}$ with $n=e_{\psi_{p}}(P)$.

- If $v_{P}(a) \geq 0$ and $v_{P}(b) \geq 0$, then the reduced curve of E is

$$
\tilde{E}: \tilde{y}^{2}=\tilde{x}^{3}+a(P) \tilde{x}+b(P)
$$

Theorem

If the reduced curve \tilde{E} is non-singular, then there exists a Galois equivariant group homomorphism $\pi: E\left(\hat{L}_{p, P}\right) \rightarrow \tilde{E}(k)$. Moreover π restricted to the torsion subgroup is injective.

- If $Q=\psi_{p}(P) \neq O_{C}$ and $\sigma \in \operatorname{Gal}\left(\hat{L}_{p, P} / \hat{K}_{Q}\right)$, then

$$
\pi \circ \sigma(R)=\tilde{\sigma} \circ \pi(R)=\pi(R)
$$

for all $R \in E[p]$. Hence $\sigma=\mathrm{id}$.

- Let $P \in D_{p}$ be such that $\psi_{p}(P)=O_{C}$.
- Define $t=\frac{a}{b}$ and $u=\frac{a^{3}}{b^{2}}$. Notice that t uniformizer at O_{C}.

$$
E: y^{2}=x^{3}+a x+b=x^{3}+u t^{-2} x+u t^{-3} .
$$

- Let M be the splitting field of $X^{2}-t$ over $\hat{L}_{p, P}$ and $s^{2}=t$.
- Change of coordinates $\xi=s^{2} x, \eta=s^{3} y$ gives

$$
E: \eta^{2}=\xi^{3}+u \xi+u
$$

with $\Delta(E)=t^{6}$ and $j(E)=1728 \cdot 4 \frac{u^{3}}{t^{6}}$.

- Via the Tate curve for some $q \in M$ with $v_{M}(q)=-v_{M}(j(E))$

$$
E\left(\hat{L}_{p, P}\right)[p] \subset E(M)[p] \cong E_{q}(M)[p] \cong\left(M^{*} / q^{\mathbb{Z}}\right)[p]
$$

- If $z^{p}=q$ for some $z \in M^{*}$, then $p \cdot v_{M}(z)=6 v_{M}(t)$.
- Let $k=\mathbb{C}$ and $p>3$.
- Define $L_{p, x}=K(x(E[p]))$.
- Consider the curve $D_{p, x}$ corresponding to $L_{p, x}$.
- The inclusion $K \rightarrow L_{p, x}$ gives $\psi_{p, x}: D_{p, x} \rightarrow C$.

Theorem

Let $P \in D_{p, x}$. If $\psi_{p, x}(P)=O_{C}$, then $\psi_{p, x}$ is ramified at P with ramification index p, else $\psi_{p, x}$ is unramified at P.

Corollary

The genus of $D_{p, x}$ is

$$
g_{D_{p, x}}=\frac{1}{4}\left(p^{2}-1\right)(p-1)+1
$$

- Branched covering spaces of a elliptic curve with a single branch point exist,
- but not with two sheets.
- Saw explicit example with three sheets.
- It is possible to construct a family of such spaces for

$$
C: 4 a^{3}+27 b^{2}=1
$$

and derive the

- Galois group,
- ramification indices,
- genus.

