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Introduction

The present thesis is the result of studying questions concerning three topics in
arithmetic geometry. Here we will describe and motivate these questions.

Preliminaries

We briefly and informally introduce a couple of frequently used concepts in this
introduction. Let k be a field and k an algebraic closure of k.

Loosely speaking, a variety over k is an irreducible topological space X to-
gether with a ring of function OX such that locally X is the set of zeros in k

n

of a finite system of polynomial equations in k[x1, . . . , xn]. The set X(k) consists
of the solutions with coordinates in k. More formally, a variety X over k is a
geometrically integral scheme separable and of finite type over k. A curve over
k is a variety over k of dimension 1, and a surface over k is a variety over k of
dimension 2.

An abelian variety A over k is a complete group variety over k. This implies
that A(l) is a group for every extension l of k and the group structure is compatible
with field extensions. In fact the A(l) are abelian groups. The n-torsion subgroup
A[n] is the subgroup of A

(
k
)

of elements of order dividing n. An isogeny A1 → A2

of abelian varieties A1 and A2 is a surjective morphism compatible with the group
structures such that the dimensions of A1 and A2 are equal. It is a weaker version
of an isomorphism.

An elliptic curve E over k is an abelian variety over k of dimension 1. If the
characteristic of k is different from 2 and 3, then the underlying set of E is the set
of solutions of a short Weierstrass equation

y2 = x3 + ax+ b

and a point O at infinity, where a, b are constants in k such that 4a3 + 27b2 6= 0.

Let C be a complete non-singular curve over k of genus g. Although C itself is
never an abelian variety for g > 1, we can assign an abelian variety Jac (C) to C
called the Jacobian variety. The group structure on Jac (C)

(
k
)

is related to the
group of divisors on C modulo an equivalence relation. Divisors are formal finite
sums of points in C

(
k
)
. The dimension of Jac (C) is equal to g.
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A Galois representation is a continuous homomorphism G → GLd(K), where
G is a usually infinite Galois group and K is a topological field such as Fp or Qp.
An important construction of Galois representations works as follows. Let A be an
abelian variety over k. The action of Gal

(
k/k

)
on the coordinates of the points in

A
(
k
)

restricts to an action on A[n]. Since A[n] is a free Z/nZ-module, for n = p
a prime different from the characteristic of k we get a Galois representation

Gal
(
k/k

)
−→ GLd(Fp),

where d = 2 dimA. Another representation is obtained by gluing together the
modules A[n] for n = p, p2, p3, . . . via multiplication by p, namely

Gal
(
k/k

)
−→ GLd(Qp).

We provide a few references to the literature for a more rigorous background.
An elementary introduction to algebraic geometry is given in [18, 47], and for more
advanced topics see [25, 40, 66]. Abelian and Jacobian varieties are described
in [45, 46]. An elementary introduction to elliptic curves is available from [63],
and a more advanced discussion is provided in [61, 74]. For Galois representations
see [12, Chapter 9].

Maximal curves

The first topic of this thesis deals with curves over finite fields such that the curve
has many rational points. The number of rational points on a curve C of genus g
over the field Fq with q elements is restricted by the well-known Hasse-Weil-Serre
bound

q + 1− gb2√qc ≤ |C(Fq)| ≤ q + 1 + gb2√qc.
We call the curve C maximal over Fq if the upper bound is attained.

Interest in curves with many points comes from coding theory. A linear code
is a subspace of a finite dimensional vector space over Fq. It is used to encode
information in such a way that errors can be detected and corrected. Goppa in
1981 introduced a method to construct a linear code from a curve over a finite field:
Let C be a curve over Fq, D a rational divisor on C and P = {P1, . . . , Pn} ⊂ C(Fq)
a subset of rational points such that Supp (D) ∩ P = ∅. Consider the linear map

L(D) −→ Fnq
f 7−→ (f(P1), . . . , f(Pn))

that evaluates functions on C with poles bounded by D. The image of this map
is a subspace of Fnq , that is a linear code of length n. The more rational points
the curve C has, the longer the corresponding linear code. See [68] for more
information on curves and their linear codes.

A curve with many points is also interesting in itself. Consider the quantity

Nq(g) := max {|C(Fq)| : C a curve of genus g over Fq}
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and its asymptotic value

Aq := lim sup
g→∞

Nq(g)

g
.

A precise description of Nq(g) is known for g = 0, 1, 2, see [75, Theorem 4.1]
and [54, Théorèmes 3 et 4] for the latter two cases. For higher genus such a
description is unknown. However tables of lower and upper bounds on Nq(g) for
small q and g are available online at [19]. These tables are the successors to the
tables listed in [20].

The Hasse-Weil-Serre bound provides an upper bound on Nq(g) and Aq, but
in general the bound is suboptimal. For example by considering C(Fq) ⊂ C

(
Fq2
)

Ihara deduced that if C is maximal over Fq, then the genus of C is bounded from
above in terms of q, that is if the genus g is sufficiently large with respect to the
cardinality of Fq, a maximal curve of genus g does not exists over Fq. Moreover
the Drinfeld-Vladut bound is

Aq ≤
√
q − 1,

whereas the Hasse-Weil-Serre bounds only gives Aq ≤
⌊
2
√
q
⌋
. For a concrete pair

of a field Fq and genus g the Hasse-Weil-Serre bound can sometimes be improved
by considering for example the Jacobian variety of C as in [26, 27]. See also [68]
for more information on upper bounds on Nq(g) and Aq.

Lower bounds on Nq(g) and Aq are usually obtained by providing actual curves
with many points. Often constructions of such curves are motivated by the fol-
lowing fact: If a curve C is maximal over Fq and there is a surjective morphism
of curves C → D, then D is also maximal over Fq. Therefore it seems reasonable
to start with a curve D with many points and then consider morphisms C → D
such that C has the desired genus. See [20] and references therein for various
constructions.

In Chapter 1 we study elliptic curves E over Fq such that E is maximal over
a finite extension of Fq, that is

|E(Fqn)| = qn + 1 +
⌊
2
√
q
n⌋

for some n > 1. We ask if the degree n of the field extension can be bounded, and
how many elliptic curves are maximal over such an extension.

In Chapter 2 we construct curves of genus 2 over Q and over quadratic number
fields such that for a positive proportion of the set of all primes p their reduction
modulo a prime (above) p is maximal over Fp2 . As in [35] we use the theory
of complex multiplication of elliptic curves to obtain a precise description of the
reduction modulo p.

The Hesse pencil

The second topic of this thesis deals with an explicit family of elliptic curves whose
Galois representation on the 3-torsion subgroup is constant. The interest in such
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families started with the proof of the Modularity Theorem for semi-stable elliptic
curves over Q.

We briefly introduce modular elliptic curves. Consider the upper half-plane
H := {z ∈ C : Im (z) > 0} and the action of SL2(Z) on H ∪ P1(Q) by Möbius
transformations. The quotient space of H ∪ P1(Q) by the subgroup

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
is a compact Riemann surface, which in this case is an algebraic curve X0(N) over
Q. An elliptic curve E over Q is called modular if there exists a positive integer
N and a surjective morphism

X0(N) −→ E

over Q. Wiles proved in 1995 that every semi-stable elliptic curve over Q is modular
[76, Theorem 5.2]. Later this was extended to all elliptic curves over Q in [7,
Theorem A]. See [12] for an introduction to the Modularity Theorem.

The work of Wiles generated interest in explicit families of elliptic curves over
Q in which every elliptic curve has the same Galois representation on its p-torsion
subgroup for a fixed prime p. The idea was to explicitly prove that infinitely
many j0 ∈ Q occur as the j-invariant of a modular elliptic curve. Such a family is
constructed in [53] for p = 3 and p = 5.

In Chapter 3 we use the Hesse pencil of a given elliptic curve E over k to con-
struct a family of elliptic curves such that for every curve the Galois representation
on its 3-torsion subgroup is isomorphic to

Gal
(
k/k

)
−→ Aut (E[3]),

and we give an elementary proof of its universal property. The classical Hesse
pencil is given by

C : x3 + y3 + z3 + 6txyz = 0 ⊂ P2

with parameter t, see also [1]. It has 9 base points and these points are precisely
the flex points of the cubics in this family. Since for an elliptic curve given by a
Weierstrass equation the flex points coincide with the points of order dividing 3,
the Hesse pencil appears to be the natural candidate for such a family.

The Mestre curve

The remaining topics of this thesis originated from a question concerning a hyper-
elliptic curve of genus 6 constructed by Mestre in [44], which we call the Mestre
curve.

Consider an elliptic curve E over Q. The group of rational points E(Q) is
abelian, and is finitely generated by the Mordell-Weil Theorem, that is

E(Q) ∼= A× Zr
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with A a finite abelian group and r the rank of E. Elkies found an example of an
elliptic curve over Q with rank at least 28. It is unknown which ranks of elliptic
curves over Q actually do occur, but on average the rank is bounded from above
[3, Corollary 1.2]. See [59] for a concise survey on ranks of elliptic curves over Q.

In Chapter 4 we study the Jacobian variety of the Mestre curve. This curve is
used in [67] to construct a family of elliptic curves over Q such that the rank is at
least 2 for infinitely many curves. Since the rank of these curves is related to the
Jacobian variety of the Mestre curve, we hope to say more on the resulting rank
by studying the Jacobian variety.

In Chapter 5 we consider the Faltings method to compare Galois representa-
tions attached to abelian varieties. This method allows us in principle to decide
if two abelian varieties are isogeneous or not. We discuss if it is possible to apply
this method explicitly to the Jacobian variety of a genus 2 curve and a product of
two elliptic curves from Chapter 4.

In Chapter 6 we try to compute Galois extensions K of Q such that the Galois
group has exponent 4, that is every automorphism σ ∈ Gal (K/Q) has order
dividing 4. We need to determine such a field extension as a first step to apply
the method in Chapter 5 to abelian surfaces.

In Chapter 7 we consider complex uniformization of abelian varieties as an al-
ternative to the Faltings method. This method is employed in [72, 73] to explicitly
compute isogenies between the Jacobian varieties of genus 2 curves. We apply this
method to explicitly compute a morphism from a genus 2 curve to an elliptic curve
over Q.
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Chapter 1

Elliptic curves maximal over
finite extensions

Let E be an elliptic curve over Fq. Recall the well-known Hasse bound on the
number of points on an elliptic curve

||E(Fqn)| − qn − 1| ≤
⌊
2
√
q
n⌋
,

see for example [61, Theorem V.1.1] or [65, Theorem 5.1.1]. If E attains the Hasse
upper bound over some finite extension, that is

|E(Fqn)| = qn + 1 +
⌊
2
√
q
n⌋

for some n, then we say E is maximal over Fqn . We are interested in:

Question. Let E be an elliptic curve over Fq. Is E maximal over some finite
extension of Fq?

This question is studied and partially answered by Doetjes in [14]. He shows
that every elliptic curve over F2 is maximal over some extension, that elliptic curves
over F3 in five isogeny classes are maximal over some extension, that elliptic curves
over F3 in the remaining two isogeny classes are not maximal over extensions of
low degree, and that elliptic curves over Fq with q a square are maximal over some
extension in precisely three cases.

Our first result is summarized as:

Theorem 1.1. Let E be an elliptic curve over Fq and a1 = q + 1− |E(Fq)|.

1. If E is supersingular, that is a1 ∈
{

0,±√q,±
√

2q,±
√

3q,±2
√
q
}

, then E is

maximal over infinitely many extensions of Fq except when a1 ∈
{
−√q, 2√q

}
.

In these exceptional cases extensions over which E is maximal do not exist.

2. If E is ordinary, that is gcd (a1, q) = 1, then there are at most finitely many
extensions of Fq over which E is maximal. Furthermore if q is a square,
then such extensions do not exist.
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We prove the first part of the theorem in Section 1.1. The second part we treat
in Section 1.2. There we also give an explicit bound on the degree of the extension
and list the pairs q, a1 with q < 1000 corresponding to ordinary elliptic curves
over Fq maximal over some finite extension. In Subsection 1.2.4 we show that the
degree of the extension is at most 11 for sufficiently large q.

Our second result is:

Theorem 1.2. For infinitely many primes p there exists an elliptic curve E over
Fp such that E is maximal over Fp3 .

This confirms an observation made by Soomro in [65, Section 2.7] as well as
our computations in Subsection 1.2.3. We prove the theorem in Section 1.3.

Notice that the property of E to be maximal over Fqn depends only on the
isogeny class of E, because isogeneous elliptic curves over a finite field have the
same number of points, see [9, Lemma 15.1]. The isogeny classes of elliptic curves
over Fq correspond to integers a1 such that |a1| ≤ 2

√
q and some additional con-

ditions, see [75, Theorem 4.1]. Define the integers an as

an = qn + 1− |E(Fqn)|.

If α is an eigenvalue of Frobenius, that is a root of the polynomial X2 − a1X + q,
then an = αn + ᾱn with ᾱ the conjugate of α, see [61, Section V.2]. So, the an’s
satisfy the recurrence relation

an+1 = a1an − qan−1

for n a positive integer and a0 = 2. Hence we reduced our question to:

Question. Let q be a prime power and a1 an integer such that |a1| ≤ 2
√
q. Is

there a positive integer n such that −an =
⌊
2
√
qn
⌋
?

In this chapter q, a1 are integers with q ≥ 2 and |a1| ≤ 2
√
q, α is a root of

X2 − a1X + q and β = α√
q . Fix an embedding Q

(√
q, α
)
→ C such that

√
q > 0

and α lies in the upper half-plane, that is arg (α) ∈ [0, π].

If β is a root of unity, then the pair q, a1 is called supersingular , otherwise
the pair is called ordinary . This definition agrees with the one for elliptic curves
whenever the pair q, a1 corresponds to an isogeny class of elliptic curves, see again
[75, Theorem 4.1].

The answer to the question is divided into two cases, namely the supersingular
case and the ordinary case.

1.1 Supersingular case

The first part of Theorem 1.1 follows directly from:
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Proposition 1.3. Let q, a1 be integers with q ≥ 2 and |a1| ≤ 2
√
q. If the pair

q, a1 is supersingular, then −an =
⌊
2
√
qn
⌋

for some positive integer n if and only
if

a1 ∈
{

0,
√
q,±

√
2q,±

√
3q,−2

√
q
}
.

Moreover if such an integer n exists, then there exist infinitely many.

The proposition above extends the result for Fq with q a square presented in
[14, Chapter 5] to arbitrary q ≥ 2. The new proof uses the following results:

Lemma 1.4. If β is a root of the polynomial X2 − a1√
qX + 1 with q, a1 integers

and q non-zero, then β is a root of unity if and only if

a1 ∈
{

0,±√q,±
√

2q,±
√

3q,±2
√
q
}
.

Proof. Suppose that β is a primitive root of unity of order n. Let ϕ denote
Euler’s function, then [Q(β) : Q] = ϕ(n). Since

[
Q
(√
q, β
)
,Q
]
∈ {1, 2, 4}, the

same is true for [Q(β) : Q]. The cyclotomic polynomials of degree dividing 4 are
listed in Table 1.1. Evaluate X2 − a1√

qX + 1 in a primitive root of unity ζn of

order n for n = 1, 2, 3, 4, 6 to obtain a1 = 2
√
q,−2

√
q,−√q, 0,√q respectively.

Notice that β is also a root of X4 +
(

2− a21
q

)
X2 + 1, and this polynomial and

the cyclotomic polynomial both have degree 4 for n = 5, 8, 10, 12. This implies
that a1 = ±

√
2q,±

√
3q for n = 8, 12 respectively, and that the cases n = 5, 10 are

impossible. Hence a1 is as desired.
Assume that

a1 ∈
{

0,±√q,±
√

2q,±
√

3q,±2
√
q
}
.

If a1 = ±2
√
q, then X2− a1√

qX+1 = (X ∓ 1)
2
, that is β is a root of unity. Since β

is a root of X2− a1√
qX+1, β is also a root of X4 +

(
2− a21

q

)
X2 +1. If a1 6= ±2

√
q,

then one of both polynomials is listed Table 1.1, that is β is a root of unity. Hence
in either case β is a root of unity.

Lemma 1.5. Let q, a1 be integers with q positive and |a1| ≤ 2
√
q. If n is a positive

integer, then

−an =
⌊
2
√
q
n⌋ ⇐⇒ |βn + 1| < 1

4
√
qn
.

Proof. Notice that −an =
⌊
2
√
qn
⌋

is equivalent to −an ≤ 2
√
qn < −an + 1, which

is the same as 0 ≤ an + 2
√
qn < 1. Since |an| ≤ 2

√
qn implies 0 ≤ an + 2

√
qn, in

fact −an =
⌊
2
√
qn
⌋

if and only if
∣∣an + 2

√
qn
∣∣ < 1.

Recall that an = αn + ᾱn and |α| = √q and β = α
|α| . Observe that

an + 2
√
q
n

= αn + ᾱn + 2
√
q
n

= ᾱn
(
β2n + 1 + 2βn

)
= ᾱn(βn + 1)

2
.

Substitute this relation in the last inequality to complete the proof.
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Table 1.1: The list of all cyclotomic polynomials Φn of degree d dividing 4. Recall
that ϕ(n) = [Q(ζn) : Q] = d.

d n Φn
1 1 X − 1

2 X + 1
2 3 X2 +X + 1

4 X2 + 1
6 X2 −X + 1

4 5 X4 +X3 +X2 +X + 1
8 X4 + 1
10 X4 −X3 +X2 −X + 1
12 X4 −X2 + 1

Proof of Proposition 1.3. Suppose that |βn + 1| < 1
4
√
qn for some positive integer

n and βm + 1 6= 0 for all integers m. Recall that β is a root of X2 − a1√
qX + 1 and

by assumption β is also a root of unity. Thus the order of β is odd. According to
Lemma 1.4 and its proof β has order 1 or 3. If the order is 1, then |βm + 1| = 2
for all integers m. If the order is 3, then |βm + 1| ≥ 1 for all integers m. In either
case this contradicts |βn + 1| < 1

4
√
qn . Hence for n a positive integer

|βn + 1| < 1
4
√
qn

⇐⇒ βn + 1 = 0.

Lemma 1.4 implies that βn + 1 = 0 for some positive integer n if and only if
the order of β is even if and only if a1 ∈

{
0,
√
q,±
√

2q,±
√

3q,−2
√
q
}

.
The proposition follows from Lemma 1.5.

1.2 Ordinary case

The first result restricting the possible values of q and n in this case is:

Proposition 1.6. Let q, a1 be integers with q ≥ 2 and |a1| ≤ 2
√
q. If the pair

q, a1 is ordinary and −an =
⌊
2
√
qn
⌋

for some positive integer n, then q is not a
square and n is odd.

Proof. Assume that −an =
⌊
2
√
qn
⌋

for some positive integer n. Recall that β =
α
|α| . If q is a square or n is even, then

⌊
2
√
qn
⌋

= 2
√
qn, that is βn + 1 = 0 (see

Lemma 1.5). However by assumption β is not a root of unity.

1.2.1 Upper bounds on the degree

Given an ordinary pair q, a1 we derive an upper bound on the n’s such that −an =⌊
2
√
qn
⌋

using estimates for linear forms in logarithms.
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Proposition 1.7. Let q, a1 be integers with q ≥ 2 and |a1| ≤ 2
√
q. If the pair

q, a1 is ordinary, then −an =
⌊
2
√
qn
⌋

for at most finitely many n.

If β is an algebraic number, then the height of β is defined as the maximum of
the absolute value of the coefficients of the primitive irreducible polynomial over
Z with root β.

We denote the principal value of the complex logarithm by log.

Lemma 1.8. If β is an algebraic number such that |β| = 1 and β is not a root of
unity, then

log |log (−βn)| > −(32d)
400

log (4) log log (4) log (h) log (n)

for all integers n ≥ 4, where d = [Q(β) : Q] and h ∈ Z≥4 is an upper bound on the
height of β.

This is a consequence of Baker’s Theorem [2].

Proof. Notice that

log (−βn) = log (−1) + n log (β) + 2πki = (2k + 1) log (−1) + n log (β)

for some integer k. Define m = 2k+ 1. Since β is not a root of unity, |log (β)| < π
and |log (−βn)| < π. This gives

|m|π = |log (−βn)− n log (β)| ≤ |log (−βn)|+ n|log (β)| < (n+ 1)π,

that is |m| ≤ n as m,n are integers. The lemma follows from [2, Theorem 2] with
4, h as the upper bounds on the heights of −1, β respectively.

Lemma 1.9. Let q, a1 be integers with q ≥ 2 and |a1| ≤ 2
√
q. If the pair q, a1 is

ordinary and q is not a square, then the minimal polynomial of β over Q is

X4 +

(
2− a2

1

q

)
X2 + 1.

Proof. Since β is a root of X2 − a1√
qX + 1, it is also a root of the polynomial

above. Proposition 1.3 gives a1 6= 0,±2
√
q, because β is not a root of unity. Thus√

q ∈ Q(β) and R(β) = C. Hence [Q(β) : Q] = 4, that is the degree 4 polynomial
is irreducible.

Proof of Proposition 1.7. Suppose that the pair q, a1 is ordinary, that is β is not a
root of unity. Assume without loss of generality that q is not a square, because if
−an =

⌊
2
√
qn
⌋

for some positive integer n then q is not a square by Proposition 1.6.

Assume that −an =
⌊
2
√
qn
⌋

for some positive integer n. Since − log (1− z) =∑∞
k=1

zk

k and
∑∞
k=0 z

k = 1
1−z for all |z| < 1,

|log (1− z)| =

∣∣∣∣∣
∞∑
k=1

zk

k

∣∣∣∣∣ <
∞∑
k=1

ck =
c

1− c
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for all |z| < c < 1. Take z = βn + 1 and c = 1
4
√
qn . Since |z| < c by Lemma 1.5

and c < 1 by assumption, the inequality above gives

|log (−βn)| < 1
4
√
qn − 1

.

The minimal polynomial of β over Z has degree 4 and height at most 2q by
Lemma 1.9. If n ≥ 4, then Lemma 1.8 gives

log |log (−βn)| > −c̃ log (2q) log (n).

with c̃ = 22800 log (4) log log (4).

Let d ∈ R be a positive constant such that d 4
√
qn ≤ 4

√
qn − 1 for all n ≥ 4. If

−an =
⌊
2
√
qn
⌋

for some integer n ≥ 4, then

−c̃ log (2q) log (n) < log |log (−βn)| < − log (d)− n

4
log (q),

thus n ≤ n0 for some integer n0, because the left-hand side of the inequality is
logarithmic in n whereas the right-hand side is linear in n. Notice that n0 depends
only on q. Hence −an =

⌊
2
√
qn
⌋

only for finitely many n.

The proposition tells us that in this case there are at most finitely many so-
lutions to −an =

⌊
2
√
qn
⌋
, but the bound on n is weak because the constant c̃

is huge. We obtain a much better bound by using a result from [39] instead of
Baker’s Theorem. The improved bound is:

Proposition 1.10. Let q, a1 be integers with q ≥ 2 and |a1| ≤ 2
√
q.

• If 2 ≤ q ≤ 535, then let N be the unique zero of

n 7−→ 123.6π2 log2

(
2n

π

)
− n log (q)

4
+ log (2)

larger than π
2 e

21
2 .

• If 536 ≤ q ≤ 161043557, then let N be the unique zero of

n 7−→ 61.8π log (q) log2

(
n

π
+

2n

log (q)

)
− n log (q)

4
+ log (2)

larger than π log (q)
2π+log (q)e

21
2 .

• If 161043558 ≤ q, then let N = 85621.

If the pair q, a1 is ordinary and −an =
⌊
2
√
qn
⌋

for some n, then n < N .
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In the case q = 3 Doetjes observed in [14] that for a1 = −2 and a1 = 1 there
are no n < 1000000 such that −an =

⌊
2
√
qn
⌋
, and he expected that such n do not

exist at all. Our upper bound on n shows that his observation is correct.
Notice that in the previous proposition the upper bound on n depends on q for

q ≤ 161043557, but is independent of q for larger q. This is due to the max term
on right-hand side of the inequality in the lemma below.

The logarithmic height of an algebraic number β is defined as

1

n

(
log |b|+

n∑
i=1

log max {1, |βi|}

)
with b

∏n
i=1 (X − βi) the minimal polynomial of β over Z.

Lemma 1.11. Let β be an algebraic number of absolute value one. If β is not a
root of unity, then

log |log (−βn)| ≥ −30.9πcmax

{
d log

(n
π

+
n

c

)
, 21,

d

2

}2

for all positive integers n, where c = max {dl, π} with l an upper bound on the

logarithmic height of β and d = [Q(β):Q]
[R(β):R] .

Proof. Recall from the proof of Lemma 1.8 that

log (−βn) = m log (−1) + n log (β)

with m an odd integer such that |m| ≤ n.
Assume that m is negative. After a change of notation the lemma follows from

[39, Corollaire 1]: Let α1 = β, α2 = −1, b1 = n, b2 = −m and D = d. The α1

and α2 are multiplicatively independent, because β is not a root of unity. Denote
the logarithmic height of α by h(α). Since h(α1) ≤ l and |log (α1)| < π, choose
A1 such that

log (A1) = max
{
l,
π

D

}
.

Notice that h(α2) = 0 and |log (α2)| = π. Choose log (A2) = π
D . Finally use

b′ ≤ n
(

1
π + 1

c

)
to obtain the desired lower bound.

Assume that m is positive. Observe that the logarithmic height of β and β̄ are
equal and log

(
β̄
)

= − log (β). Thus

|log (−βn)| =
∣∣−m log (−1) + n log

(
β̄
)∣∣.

Apply [39, Corollaire 1] to the right-hand side just as before, but now with α1 = β̄
and b2 = m.

Proof of Proposition 1.10. Suppose that the pair q, a1 is ordinary. Recall from the
proof of Proposition 1.7 that if −an =

⌊
2
√
qn
⌋

for some positive integer n, then q
is not a square and

|log (−βn)| < 1
4
√
qn − 1

.
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Notice that if n0 > 0 and d = 1− 1
4
√
qn0 , then d 4

√
qn ≤ 4

√
qn − 1 for all n ≥ n0.

The minimal polynomial of β over Z divides qX4 +
(
2q − a2

1

)
X2 +q by Lemma

1.9. Since |β| = 1 and β is not a root of unity, β, β̄, −β and −β̄ are distinct roots of
this polynomial. Therefore the logarithmic height of β is at most 1

4 log (q). Notice
that [Q(β) : Q] = 2|R(β) : R|. Hence Lemma 1.11 gives

−30.9πcmax
{

2 log
(n
π

+
n

c

)
, 21
}2

≤ log |log (−βn)|

with c = max
{

1
2 log (q), π

}
.

Consider the case that 1
2 log (q) ≤ π and choose n0 = 4. Then the lower and

upper bounds on |log (−βn)| imply

0 < 30.9π2 max
{

2 log
(

2
n

π

)
, 21
}2

− n

4
log (q) + log (2).

Denote the right-hand side by f1(q, n). Let n1 = π
2 e

21
2 . Notice that

f1(q, n1) = 13626.9π2 − π

8
e

21
2 log (q) + log (2)

is a decreasing function of q and f1

(
e2π, n1

)
> 0. Therefore f1(q, n1) > 0 for all

q ≤ e2π. For n ≥ n1 the second derivative

∂2f1

∂n2
(q, n) = 123.6π2 1− log

(
2n
π

)
n2

is negative. Hence n 7→ f1(q, n) is a concave function for n ≥ n1 and so for every
q ≤ e2π it has a unique zero n2 ∈ (n1,∞). If n ≥ n2, then f1(q, n) ≤ 0 and in
particular −an 6=

⌊
2
√
qn
⌋
.

In the remainder of the proof assume that 1
2 log (q) > π. Choose n0 = 12. The

lower and upper bounds on |log (−βn)| imply 0 < f2(q, n)− log (d) with

f2(q, n) = 15.45π log (q) max

{
2 log

(
n

π
+

2n

log (q)

)
, 21

}2

− n

4
log (q).

Let n1 = π log (q)
2π+log (q)e

21
2 . Then

f2(q, n1) =
πe

21
2

4

(
27253.8− e 21

2

e
21
2

log (q) + 2π − 4π2

2π + log (q)

)
.

Observe that q 7→ f2(q, n1) has only one extremum on [e2π,∞), which is a max-
imum at q ≈ 541.9. From f2

(
e2π, n1

)
≈ 44887.2 and f2(q1, n1) > 4 · 10−6 for

q1 = 161043557 follows f2(q, n1) > 4 · 10−6 for all q ∈ [e2π, q1]. On the other hand
from f2(q1 + 1, n1) < −2 ·10−5 follows f2(q, n1) < −2 ·10−5 for all q ∈ [q1 + 1,∞).
Notice that −10−8 < log (d) < 0 for all q > e2π. Hence f2(q, n1)− log (d) > 0 for
all e2π < q ≤ q1 and f2(q, n1)− log (d) < 0 for all q ≥ q1 + 1.
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For n ≥ n1 the first and second derivatives of f2 with respect to n are

∂f2

∂n
(q, n) = 123.6π log (q)

log
(
n
π + 2n

log (q)

)
n

− log (q)

4
,

∂2f2

∂n2
(q, n) = 123.6π log (q)

1− log
(
n
π + 2n

log (q)

)
n2

.

The first derivative is negative for n = n1. The second derivative is negative for all
n ≥ n1. Hence n 7→ f2(q, n)− log (d) is a strictly decreasing function for n ≥ n1.
If q ≥ q1 + 1, then it does not have a zero for n ≥ n1. For every e2π < q ≤ q1 it
has a unique zero n2 ∈ (n1,∞). As before if n ≥ n2, then f2(q, n) − log (d) ≤ 0
and so −an 6=

⌊
2
√
qn
⌋
.

Consider the last case q ≥ q1 + 1 and n < n1. Then 0 < f2(q, n) − log (d) is
equivalent to

n < 27253.8π − 4d

log (q)
.

Hence n < 85621.

1.2.2 Convergents

An efficient method to determine the possible n such that −an =
⌊
2
√
qn
⌋

is to
compute convergents of a number associated to q and a1, as described in [14,
Section 6.1]. The reason why is given by [14, Stelling 6.8]. We reformulate and
extend this result in the proposition and corollary below.

Proposition 1.12. Let q, a1 be integers with q ≥ 2 and a1 = 2
√
q cos (θ) for some

θ ∈ [0, π]. If −an =
⌊
2
√
qn
⌋

for some positive integer n, then∣∣∣∣ θπ − m

n

∣∣∣∣ < 1

π

√
48

48− π2

1

n 4
√
qn

with m an odd integer.

Notice that the proposition is closely related to the upper bound on

|log (−βn)| = |m log (−1) + n log (β)|,

because log (−1) = iπ and log (β) = iθ by the choice of β ∈ C.
The proof is a reformulation of the proof of [14, Stelling 6.8].

Proof. Notice that an = 2
√
qn cos (nθ). Therefore −an =

⌊
2
√
qn
⌋

is equivalent to

1 + cos (nθ) < 1
2
√
qn . Choose φ = nθ−mπ with m ∈ Z such that φ ∈

[
−π2 ,

π
2

)
. In

fact m must be odd and |φ| < π
2 , otherwise

cos (nθ) = cos (mπ + φ) = (−1)
m

cos (φ) ≥ 0
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in contradiction with 1 + cos (nθ) < 1
2
√
qn . Thus

1− cos (φ) = 1 + cos (mπ + φ) = 1 + cos (nθ) <
1

2
√
qn
.

Use cos (x) ≤ 1− 1
2x

2 + 1
24x

4 and |φ| < π
2 to obtain

48− π2

48
φ2 < φ2

(
1− 1

12
φ2

)
= φ2 − 1

12
φ4 ≤ 2− 2 cos (φ) <

1
√
qn
.

Apply the inequality to
∣∣ θ
π −

m
n

∣∣ = |φ|
πn and the proposition follows.

Corollary 1.13. Let q, a1 be integers with q ≥ 2 and a1 = 2
√
q cos (θ) for some

θ ∈ [0, π] and x ∈ R such that for some positive integer N

∣∣∣∣x− θ

π

∣∣∣∣ ≤ 1

2N2
·

 1− 2
π

√
48

48−π2
13

4√2
13 if q = 2,

1− 2
π

√
48

48−π2
3

4
√
q3

if q ≥ 3.

If −an =
⌊
2
√
qn
⌋

for some odd integer 3 ≤ n ≤ N and either q ≥ 3 or n ≥ 13,
then m

n is a convergent of x for some odd m.

This and Proposition 1.6 together imply [14, Stelling 6.8] for x = θ
π .

Proof. Assume that −an =
⌊
2
√
qn
⌋

for some n ∈ Z>0. If x ∈ R such that∣∣∣∣x− θ

π

∣∣∣∣ ≤ 1

2n2
− 1

π

√
48

48− π2

1

nq
n
4
,

then
∣∣x− m

n

∣∣ ≤ ∣∣x− θ
π

∣∣ +
∣∣ θ
π −

m
n

∣∣ < 1
2n2 for some odd m by Proposition 1.12.

Hence m
n is a convergent of x by [23, Theorem 184].

Define the function f : R→ R as

f(n) = 1− 2

π

√
48

48− π2

n
4
√
qn
.

It has a global minimum at n0 = 4
log (q) , because

df

dx
(n) = − 1

2π

√
48

48− π2

4− n log (q)
4
√
qn

is positive for n > n0 and negative for n < n0. In particular

f(n0) = 1− 2

π

√
48

48− π2

4

e log (q)
,
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which is positive for all q except q = 2. If q = 2, then n = 13 is the first integer
for which f(n) is positive. If q = 3, then 3 < n0 < 4 and f(3) < f(5). If q ≥ 4,
then n0 < 3. Since 3 ≤ n ≤ N is odd and either q ≥ 3 or n ≥ 13,

f(n)

2n2
≥ f(n)

2N2
≥ 1

2N2

{
f(13) if q = 2,
f(3) if q ≥ 3.

≥
∣∣∣∣x− θ

π

∣∣∣∣.
Hence m

n is a convergent of x.

Beware that if −an =
⌊
2
√
qn
⌋

for some suitable q and n, then m
n is a convergent

of θ
π according to the corollary, but m and n need not be relative prime. However

if d = gcd (m,n), then −an′ =
⌊
2
√
qn
′
⌋

for n′ = n
d , because for φ as in the proof

of Proposition 1.12 the equality for n′ is equivalent to

1 + cos (n′θ) = 1− cos

(
φ

d

)
≤ 1− cos (φ) <

1
√
qn
≤ 1
√
qn
′

by the proof of Proposition 1.12.

1.2.3 Algorithm

The previous two subsections together give a simple algorithm to compute for a
given ordinary pair of integers q, a1 with q ≥ 2 and |a1| ≤ 2

√
q the n’s such that

−an =
⌊
2
√
qn
⌋
. See Algorithm 1.1.

We implemented the algorithm in Pari/GP [50] for pairs q, a1 corresponding to
isogeny classes of ordinary elliptic curves, that is q is a prime power, |a1| ≤ 2

√
q

and gcd (q, a1) = 1. Two implementation details:

• The execution time of the function ConvergentsToSolutions can be re-
duced by verifying the necessary condition in Proposition 1.12 before calling
IsSolution.

• In practice the value of θ
π is known only up to some error ε. Let N be the

upper bound from Proposition 1.10. If |ε| ≤ 10−15, then by Corollary 1.13 a
convergent m

n of θ
π with n ≤ N is also a convergent of θ

π + ε.

Using our program we computed the triples (q, a1, n) with q < 1000000 a prime
power, |a1| ≤ 2

√
q, gcd (q, a1) = 1 and n > 1 such that −an =

⌊
2
√
qn
⌋
. All triples

have n = 3 or n = 5, except for (2, 1, 13) and (5, 1, 7). The triples with n = 3
and q < 1000 are listed in Table 1.2 and the triples with n = 5 and q < 1000000
are listed in Table 1.3. Based on these results we expect that the cases n = 3 and
n = 5 occur infinitely often, whereas the cases n ≥ 7 happen at most finitely many
times.
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Algorithm 1.1 The procedure MaximalCurves takes as input integers q, a1

with q ≥ 2 and |a1| ≤ 2
√
q such that the pair is ordinary and outputs the n’s

with n > 1 such that −an =
⌊
2
√
qn
⌋
. The function MaximalDegree(q) returns

the upper bound on n from Proposition 1.10, the function Convergents(x, N)
computes the convergents of x with denominator at most N and the function
IsSolution(q,a1,n) checks −an =

⌊
2
√
qn
⌋
.

1: procedure MaximalCurves(q, a1)
2: if q not square then
3: θ ← ArcCos( a1

2
√
q )

4: N ← MaximalDegree(q)
5: C ← Convergents( θπ , N)
6: if q = 2 then
7: for all n ∈ {3, 5, 7, 9, 11} do
8: if IsSolution(q, a1, n) then
9: print n

10: end if
11: end for
12: end if
13: for all m

n ∈ C : m odd, n odd do
14: ConvergentsToSolutions(q, a1, N , n)
15: end for
16: end if
17: end procedure

18: function ConvergentsToSolutions(q, a1, N , n)
19: if IsSolution(q, a1, n) then
20: if n > 1 then
21: print n
22: end if
23: for all p ∈

{
3, . . . ,

⌊
N
n

⌋}
: p prime do

24: ConvergentsToSolutions(q, a1, N , pn)
25: end for
26: end if
27: end function



1.2. ORDINARY CASE 13

Table 1.2: The list of all pairs q, a1 with q < 1000 a prime power, |a1| ≤ 2
√
q and

gcd (q, a1) = 1 such that −a3 =
⌊
2
√
q3
⌋
.

q a1 q a1 q a1 q a1 q a1 q a1

2 1 37 6 103 10 229 15 479 22 787 28
3 2 47 7 167 13 257 16 487 22 839 29
5 2 61 8 173 13 293 17 571 24 967 31
8 3 67 8 193 14 359 19 577 24
11 3 79 9 197 14 397 20 673 26
17 4 83 9 199 14 401 20 677 26
23 5 97 10 223 15 439 21 727 27
27 5 101 10 227 15 443 21 733 27

Table 1.3: The list of all pairs q, a1 with q < 1000000 a prime power, |a1| ≤ 2
√
q

and gcd (q, a1) = 1 such that −a5 =
⌊
2
√
q5
⌋
.

q a1 q a1

2 -1 8807 -58
3 -1 10391 -63
11 -2 10399 165
23 -3 22159 -92
31 9 122147 -216
128 -7 192271 -271
317 -11 842321 1485
2851 -33

1.2.4 Upper bound on the cardinality

In this subsection we determine an upper bound on q and conclude:

Theorem 1.14. There exist only finitely many ordinary pairs q, a1 such that
−an =

⌊
2
√
qn
⌋

for some n ≥ 13.

Since the proof of Proposition 1.7 also gives an upper bound on the degree n
independent of q, the theorem is an immediate consequence of:

Proposition 1.15. Let n ≥ 13 be an integer. There exists a constant qn such that
if −an =

⌊
2
√
qn
⌋

for some integers q, a1 with q ≥ 2 and |a1| ≤ 2
√
q, then q ≤ qn

or the pair q, a1 is supersingular.

Proof. Assume that q, a1 are integers with q ≥ 2 and |a1| ≤ 2
√
q such that −an =

b2
√
qnc for some n, then |βn + 1| < 1

4
√
qn by Lemma 1.5. Moreover assume that

the pair q, a1 is ordinary, that is β is not a root of unity.
Observe that βn + 1 =

∏n
i=1

(
β − ζ2i+1

2n

)
. Let i0 be an integer such that∣∣β − ζ2i0+1

2n

∣∣ = min
i

∣∣β − ζ2i+1
2n

∣∣,
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which determines i0 uniquely modulo n because β is not a root of unity. Since∣∣β − ζ2i+1
2n

∣∣ ≥ min
{∣∣ζ2i0

2n − ζ
2i+1
2n

∣∣, ∣∣ζ2i0+2
2n − ζ2i+1

2n

∣∣} > 0,

for all i 6≡ i0 mod n, there exists a positive constant cn such that

|βn + 1| ≥ cn|β − ζm2n| ≥ cn
∣∣∣∣ a1

2
√
q
− cos

(mπ
n

)∣∣∣∣
with m = 2i0 + 1. Let ε > 0. According to [8, Theorem 2.7] there exists an
ineffective constant c′0 depending on cos

(
mπ
n

)
and ε such that∣∣∣∣ a1

2
√
q
− cos

(mπ
n

)∣∣∣∣ ≥ c′0
h3+ε

with h the height of a1
2
√
q . Since there are n possible values of m, the above

inequality is also true for some constant c0 depending only on n and ε. The height
of a1

2
√
q is at most 4q. Therefore

|βn + 1| ≥ c0cn

(4q)
3+ε =

c

q3+ε

for some positive constant c depending only on n and ε.
Choose ε = 1

8 and n ≥ 13. The upper and lower bounds on |βn + 1| imply
c < q3+ε−n4 . The right-hand side converges to zero for q → ∞, but c > 0. Hence
q ≤ qn for some constant qn independent of β.

In some sense this proposition is the best possible in terms of n, because for
n = 7, 9, 11 and m relative prime to n we deduce from [8, Theorem 2.8] that there
exists a constant c̃ and infinitely many algebraic numbers γ of degree 1 or 2 such
that

∣∣γ − cos
(
mπ
n

)∣∣ < c̃
h3−ε
γ

where hγ is the height of γ. If hγ ∼ q, then this upper

bound is eventually smaller than 1
4
√
qn .

1.3 Maximal over cubic extensions

In this section we prove Theorem 1.2. For the sake of completeness we also dis-
cuss some properties of the case n = 3. The discussion is closely related to [65,
Section 2.7].

Given a supersingular pair q, a1 such that |a1| ≤ 2
√
q and −a3 =

⌊
2
√
q3
⌋
, then

a1 = −2
√
q or a1 =

√
q by Proposition 1.3. In this case q must be a square. Since

q is a prime in Theorem 1.2, we only consider ordinary pairs.
Recall the recurrence relation an+1 = a1an − qan−1 with a0 = 2 mentioned in

the introduction. From this we deduce a3 = a3
1 − 3qa1. Therefore

−a3 =
⌊
2
√
q

3
⌋
⇐⇒ 0 ≤ a3

1 − 3qa1 + 2
√
q

3
< 1.

Define the function fq :
[
−2
√
q, 2
√
q
]
→ R as x 7→ x3 − 3qx+ 2

√
q3. The graph of

fq is shown in Figure 1.1.
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−2
√
q −√q 0

√
q 2

√
q

2
√
q3

4
√
q3

Figure 1.1: The graph of fq(a) = a3 − 3qa+ 2
√
q3.

Proposition 1.16. Let q, a1 be integers such that q ≥ 3 and |a1| ≤ 2
√
q. If

−a3 =
⌊
2
√
q3
⌋
, then a1 = −

⌊
2
√
q
⌋

or a1 =
[√
q
]
.

Proof. Notice that fq is maximal at x = −√q, 2√q and that fq is minimal at
x = −2

√
q,
√
q and

fq(−2
√
q + 1) = (3

√
q − 1)

2
> 1

and

fq

(
√
q ± 1

2

)
=

3

4

√
q ± 1

8
> 1.

Hence −2
√
q ≤ a1 < −2

√
q+ 1 or

√
q− 1

2 < a1 <
√
q+ 1

2 , that is a1 = −
⌊
2
√
q
⌋

or

a1 =
[√
q
]
.

According to the following proposition the case a1 = −
⌊
2
√
q
⌋

is possible only
if the pair q, a1 is supersingular.

Proposition 1.17. Let q be an integer with q ≥ 2 and a1 = −
⌊
2
√
q
⌋
. If −a3 =⌊

2
√
q3
⌋
, then q is a square.

Proof. Assume that q is not a square. Let a = −a1 =
⌊
2
√
q
⌋
.

The function fq is strictly monotonically increasing and strictly concave on the

interval
(
−2
√
q,−√q

)
, because

dfq
dx = 3x2 − 3q and

d2fq
dx2 = 6x are positive and

negative respectively. Let x0 be the intersection between the line y = 1 and the
line through

(
−2
√
q, 0
)

and
(
−2
√
q + 1, fq

(
−2
√
q + 1

))
. Then

a1 + 2
√
q < x0 + 2

√
q =

1(
3
√
q − 1

)2 .
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Notice that 4q = a2 + b with 1 ≤ b ≤ 2a. Since
√

1 + x ≥ 1 +
(√

2− 1
)
x for

0 ≤ x ≤ 1,

a1 + 2
√
q = a

(
−1 +

√
1 +

b

a2

)
≥
(√

2− 1
) b
a
≥
√

2− 1

a
≥
√

2− 1
√
q

.

Combining the upper and lower bounds on −a+ 2
√
q yields

0 >
(√

2− 1
)

(3
√
q − 1)

2 −√q,

but the right-hand side is positive by construction. Contradiction.

We recall a sufficient condition on q such that −a3 =
⌊
2
√
q3
⌋

for a1 =
⌊√

q
⌋
.

It is [65, Proposition 2.7.1] with a different proof.

Proposition 1.18 (Soomro). If q = a2
1 + b with integers a1, b such that a1 ≥ 2

and |b| ≤ √a1, then −a3 =
⌊
2
√
q3
⌋
.

Proof. Let 0 < ε ≤ 1
3 . Consider the function

gε(x) = 1 +
3

2
x+

3

8
(1 + ε)x2 −

√
1 + x

3

and compute dgε
dx = 3

2 + 3
4 (1 + ε)x− 3

2

√
1 + x and d2gε

dx2 = 3
4 (1 + ε)− 3

4

√
1 + x

−1
. The

function gε has extrema in x = − 4ε
(1+ε)2

and x = 0. The former is a maximum and

the latter is a minimum. Let xε the unique zero of gε such that −1 ≤ xε < − 4ε
(1+ε)2

.

Hence for all x > xε and x 6= 0

√
1 + x

3
< 1 +

3

2
x+

3

8
(1 + ε)x2.

Define x = b
a21

. Notice that

fq(a1) = −2a1
3 − 3ba1 + 2

√
a2

1 + b
3

= 2a3
1

(
−1− 3

2
x+
√

1 + x
3
)

is minimal on (xε,∞) for x = 0. If x > xε and x 6= 0, then

0 ≤ fq(a1) = 2a3
1

(
−1− 3

2
x+
√

1 + x
3
)
<

3

4
(1 + ε)

b2

a1
.

Observe that if b = 0 (or x = 0) then fq(a1) = 0.

Assume that ε = 1
3 and |b| ≤ √a1, then x ≥ −√a1

−3 > −1 = xε and 0 ≤
fq(a1) < 3

4 (1 + ε) = 1. Hence −a3 =
⌊
2
√
q3
⌋
.



1.3. MAXIMAL OVER CUBIC EXTENSIONS 17

A closer look at the proof tells us that in the proposition above the constraint
b2 ≤ a1 can be replaced by b2 ≤ 4

3
1

1+εa1 at the expense of introducing a lower
bound on a1 in terms of ε.

Before proving Theorem 1.2, let us motivate that it is a non-trivial statement.
Let q, a1 be a pair such that q is an odd prime and |a1| ≤ 2

√
q. Then a1 =

⌊√
q
⌋

and the proposition above suggests that q = a2
1 + b with b2 ≤ ca1 for some positive

constant c. However the primes of this form have Dirichlet density zero, see [65,
Remark 2.7.2]. Hence it is unlikely to find such primes.

The idea of the proof is to reduce the problem to a question on Gaussian primes
in a small sector of the plane and apply [24, Theorem 1].

Proof of Theorem 1.2. Consider the set

S1 =
{

(a, b) ∈ Z2 : p = a2 + b prime, 0 < a, |b| ≤
√
a
}

and the subset S2 = {(a, b) ∈ S1 : b square}. The set S2 corresponds to

S3 =
{

(a, c) ∈ Z2 : p = a2 + c2 prime, 0 < a, 0 ≤ c ≤ 4
√
a
}
.

Define for θ > 0

S4(θ) =
{

(a, c) ∈ Z2 : p = a2 + c2 prime, 0 < a, 0 ≤ c < pθ
}

and write S4(θ) = S5(θ) ∪ S6(θ) with S5(θ) =
{

(a, c) ∈ S4(θ) : a ≥ p4θ
}

and

S6(θ) =
{

(a, c) ∈ S4(θ) : a < p4θ
}

. Observe that S5(θ) ⊂ S3. If θ < 1
8 , then

the set S6(θ) is finite, because p = a2 + c2 < p8θ + p2θ and

lim
p→∞

(
p8θ−1 + p2θ−1

)
= 0.

The set S4(0.119) is infinite by [24, Theorem 1] and 0.119 < 1
8 . Hence the sets

S5(0.119) ⊂ S3 and S2 ⊂ S1 are also infinite. If p = a2
1 + b ∈ S1, then |a1| ≤ 2

√
q

and −a3 =
⌊
2
√
q3
⌋

by Proposition 1.18.
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Chapter 2

Maximal curves of genus 2

We will construct curves of genus 2 over number fields such that for infinitely many
primes the reduction of the curve at these primes is maximal over a quadratic
extension of the residue field. The method is related to [35] and [65, Section 4.2].

Let C be a curve of genus g over Fq. Recall the Hasse-Weil-Serre bound on the
number of points on C:

||C(Fq)| − q − 1| ≤ gb2√qc,

see [55] or [68, Theorem 5.3.1]. Analogous to Chapter 1, if the number of points
on C attains the upper bound, that is

|C(Fq)| = q + 1 + gb2√qc,

then we call the curve C maximal over Fq.
Suppose that C is a curve of genus g maximal over Fq. In this case the proof of

the Hasse-Weil-Serre bound shows that the characteristic polynomial of Frobenius
is (

X2 + b2√qcX + q
)g
.

This suggests – by Tate’s Theorem [69, Theorem 1] – that the Jacobian variety
Jac (C) of C is isogeneous over Fq to E1 × · · · × Eg with Ei isogeneous elliptic
curves over Fq. If this is indeed the case, then C is maximal over Fq if and only if
the Ei are maximal over Fq.

We briefly recall some properties of elliptic curves with complex multiplication.
Let E be an elliptic curve over a number field K. If the endomorphism ring
End (E) is not isomorphic to Z, then E has complex multiplication. In this case
E has potential good reduction at every non-zero prime ideal in the maximal
order OK of K, see [62, Theorem II.6.1]. The ring End (E) is an order in a
quadratic imaginary field L. Denote the maximal order of L by OL. If p ⊂ OK
is a prime ideal above p and E has good reduction at p, then the reduction of
E at p is supersingular if and only if the ideal (p) does not split in OL, see [38,
Theorem 13.12]. Up to isomorphism there are only finitely many elliptic curves E
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Table 2.1: A non-exhaustive list of complex multiplication by the order End (E)
in a quadratic imaginary field L together with the corresponding j-invariant and
the primes p such that (p) ⊂ OL does not split.

End (E) j(E)
Z[ζ3] 0 p = 3 or p ≡ 2 mod 3
Z[i] 2633 p = 2 or p ≡ 3 mod 4

Z
[

1
2 + 1

2

√
−7
]
−3353 p = 7 or p ≡ 3, 5, 6 mod 7

Z
[√
−2
]

2653 p = 2 or p ≡ 5, 7 mod 8

over Q with complex multiplication. The list of j-invariants can be found in [56,
Appendix A.4] and [62, Appendix A.3]. Some of them are given in Table 2.1.

Given elliptic curves E1 and E2 over a field k of characteristic different from 2,
we obtain a curve C over k by taking the fibre product of E1 and E2 along their
x-coordinates, that is

C

π1

��

π2 // E2

x2

��

E1 x1

// P1.

We assume that E1 and E2 have a unique point at infinity and that this point is
the unit element of the group. In terms of function fields we have k(Ei) = k(xi, yi)
and k(C) = k(x, y1, y2) with x = x1 = x2, y2

i = fi(x) and fi ∈ k[X] separable of
degree 3. Denote the roots of fi in k̄ by αi1, αi2 and αi3. We want C geometrically
irreducible, so f1 is not a multiple of f2 and deg (π1) = 2.

We compute the genus of C using the Hurwitz formula

2g(C)− 2 = deg (π1)(2g(E1)− 2) +
∑

P∈C(k̄)

(eπ1
(P )− 1).

The ramification index eπ1
(P ) can be read of from the divisor of f2(x1) on E1,

because k(C) = k(E1)
(√

f2(x1)
)

. Since div (f2(x1)) = x∗1(div (f2(x))),

div (f2(x1)) =

3∑
j=1

(
α2j ,±

√
f1(α2j)

)
− 6(O1)

with O1 ∈ E1(k) the point at infinity. A ramification point of π1 corresponds to
a point in the support of the above divisior and having odd multiplicity in the
divisor. Hence if precisely 0, 1 or 2 of the roots of f1 coincide with the roots of f2,
then the genus of C is 4, 3 or 2 respectively.

Assume that C has genus 2. In this case f1 and f2 share precisely two roots,
say α11 = α21 and α12 = α22. So fi =

(
X2 + aX + b

)
(X − ci). Observe that

ci ∈ k, otherwise – using the minimal polynomial of ci – the f1 and f2 have all
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roots in common. Thus also a, b ∈ k. We may assume that a = 0 by completing
the square in X2 + aX + b. Hence

Ei : y2
i = fi(xi) =

(
x2
i + b

)
(xi − ci)

for i = 1, 2. The j-invariant of Ei is

j(Ei) = 26

(
3b− c2i

)3
b(b+ c2i )

2 .

Define u = y2
y1

and v = y1

(
1− u2

)2
in k(C). Then

x = x1 = x2 =
c2 − c1u2

1− u2
= c2 +

c2 − c1
1− u2

and
v2 = (c2 − c1)

(
1− u2

)[(
c2 − c1u2

)2
+ b
(
1− u2

)2]
.

Notice that k(C) = k(u, v).

Proposition 2.1. Let k be a field of characteristic different from 2. If b, c1, c2 ∈ k
such that b 6= 0, c1 6= c2 and c2i + b 6= 0, then the curve C given by

v2 = (c2 − c1)
(
1− u2

)[(
c2 − c1u2

)2
+ b
(
1− u2

)2]
has genus 2 and

π1 : C −→ E1, (u, v) 7−→

(
c2 − c1u2

1− u2
,

v

(1− u2)
2

)

π2 : C −→ E2, (u, v) 7−→

(
c2 − c1u2

1− u2
,

uv

(1− u2)
2

)
are morphism to the elliptic curves Ei given by

y2
i =

(
x2
i + b

)
(xi − ci).

Moreover the Jacobian variety Jac (C) of C is isogeneous to E1 × E2.

Proof. The inequalities b 6= 0, c1 6= c2 and c2i + b 6= 0 are equivalent to X2 + b,
X − c1 and X − c2 having distinct roots. The preceding discussion proves all but
the last statement of Proposition 2.1.

The morphisms π1 and π2 induce a morphism

π1
∗ + π2

∗ : E1 × E2 −→ Jac (C).

Since E1 × E2 and Jac (C) both have dimension 2, it is sufficient to prove that
π1
∗ + π2

∗ is surjective. The morphism is surjective if and only if

(π1, π2)
∗

: H0
(
E1,Ω

1
E1

)
×H0

(
E2,Ω

1
E2

)
−→ H0

(
C,Ω1

C

)
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is surjective. Since

π∗1

(
dx1

y1

)
= 2(c2 − c1)

udu

v

π∗2

(
dx2

y2

)
= 2(c2 − c1)

du

v

are linear independent, π1
∗ + π2

∗ is indeed surjective.

We introduce some notations which are used in each of the examples below.
Let K be a number field of degree 1 or 2 over Q. Denote the ring of integers of
K by OK . Let p ⊂ OK be a prime ideal above p. Notice that OK/p is a field
with p or p2 elements. The constants b, c1, c2 ∈ OK and the curves C,E1, E2 over
K are as in the previous proposition. The reductions of C, E1 and E2 at p are
denoted by Cp, E1,p and E2,p respectively. If C, E1 and E2 have good reduction
at p, then Cp is maximal over Fp2 if and only if E1,p and E2,p are maximal over
Fp2 , because Jac (Cp) and E1,p ×E2,p are isogeneous over OK/p. Recall that if E
is an elliptic curve defined over Fp and p > 3, then E is supersingular if and only
if E is maximal over Fp2 .

In our first example we choose E1 and E2 such that both have complex multi-
plication by Z[ζ3] with ζ3 a primitive third root of unity. The result is essentially
the same as [65, Example 4.2.3].

Proposition 2.2. Let D be the curve over Q defined by

v2 = u6 − 1

and p 6= 2, 3 a prime. The curve D has good reduction at p. The reduction of D
at p is maximal over Fp2 if and only if p ≡ 2 mod 3.

Proof. Let K = Q and p 6= 2, 3 a prime. Observe that j(Ei) = 0 if and only if
3b = c2i . Choose c1 = 6, c2 = −c1 and b = 1

3c
2
1. The curve C is given by

v2 = 2632
(
u6 − 1

)
.

Since b = 12, c1 − c2 = 12 and c2i + b = 48, the curves C, E1 and E2 have good
reduction at p. Define the curve D over Q by

v′
2

= u6 − 1,

where v′ = v
24 . The curves Cp and Dp are isomorphic over Fp.

The curve Cp is maximal over Fp2 if and only if E1,p and E2,p are maximal
over Fp2 . The elliptic curve Ei,p is maximal over Fp2 precisely when Ei,p is su-
persingular, because Ei,p is defined over Fp. Since Ei has complex multiplication
by Z[ζ3], the elliptic curve Ei,p is supersingular if and only if p ≡ 2 mod 3, see
Table 2.1.

Hence the curve Dp is maximal over Fp2 if and only if p ≡ 2 mod 3.
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In the second example we let E1 and E2 be elliptic curves with complex mul-
tiplication by Z[ζ3] and Z[i] respectively.

Proposition 2.3. Let D be the curve over Q defined by

v2 =
(
u2 − 1

)(
4u4 − 2u2 + 1

)
and let p 6= 2, 3 be a prime. The curve D has good reduction at p. The reduction
of D at p is maximal over Fp2 if and only if p ≡ 11 mod 12.

Proof. Let K = Q and p 6= 2, 3 a prime. Recall that j(E1) = 0 if and only if
3b = c21. Observe that j(E2) = 2633 if and only if c2

(
9b+ c22

)
= 0. Choose c1 = 3,

c2 = 0 and b = 1
3c

2
1. The curve C is given by

v2 = 32
(
u2 − 1

)(
4u4 − 2u2 + 1

)
.

Since b = 3, c1− c2 = 3, c21 + b = 12 and c22 + b = 3, the curves C, E1 and E2 have
good reduction at p. Define the curve D over Q by

v′
2

=
(
u2 − 1

)(
4u4 − 2u2 + 1

)
,

where v′ = v
3 . The curves Cp and Dp are isomorphic over Fp.

The curve Cp is maximal over Fp2 if and only if E1,p and E2,p are maximal over
Fp2 . Recall that E1,p is maximal over Fp2 if and only if p ≡ 2 mod 3. Since E2

has complex multiplication by Z[i], the elliptic curve E2,p is supersingular if and
only if p ≡ 3 mod 4. Thus E2,p is maximal over Fp2 if and only if p ≡ 3 mod 4.

Hence the curve Dp is maximal over Fp2 if and only if p ≡ 11 mod 12.

We can also choose E1 and E2 such that they have complex multiplication by
Z[ζ3] and Z

[
1
2 + 1

2

√
−7
]
, but the genus 2 curve is no longer defined over Q.

Proposition 2.4. Let D be the curve over K = Q
(√

21
)

defined by

v2 =
(
u2 − 1

)(
u4 −

(
1

2
+

3

2

√
21

)
u2 + 16

)
and p ⊂ OK a prime ideal above p 6= 2, 3, 5. The curve D has good reduction at p.
The reduction of D at p is maximal over Fp2 if and only if p ≡ 5, 17, 20 mod 21.

Proof. Let K = Q
(√

21
)

and p ⊂ OK a prime ideal above p 6= 2, 3, 5. Recall
that j(E1) = 0 if and only if 3b = c21. Observe that j(E2) = −3353 if and only
if
(
63b− c22

)(
81b2 + 81bc22 + 64c42

)
= 0. Choose c1 = 3

√
21 − 3, c2 =

√
21c1 and

b = 1
3c

2
1. The curve C is given by

v2 = 2232
(

1−
√

21
)4(

u2 − 1
)[
u4 −

(
1

2
+

3

2

√
21

)
u2 + 16

]
.
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Since b = 6α, c1 − c2 = −6α, c21 + b = 24α and c22 + b = 384α with α = 11−
√

21,
the curves C, E1 and E2 have good reduction at p. Let D over K be the curve

v′
2

=
(
u2 − 1

)[
u4 −

(
1

2
+

3

2

√
21

)
u2 + 16

]
,

where v′ = v
12α . The curves Cp and Dp are isomorphic over OK/p.

Observe that the elliptic curves E1,p and E2,p are defined over OK/p. Since E1

has complex multiplication by Z[ζ3], the curve E1,p is supersingular if and only if
p ≡ 2 mod 3. Similar since E2 has complex multiplication by Z

[
1
2 + 1

2

√
−7
]
, the

curve E2,p is supersingular if and only if p = 7 or p ≡ 3, 5, 6 mod 7.
Suppose that Cp is maximal over Fp2 , that is E1,p and E2,p are maximal over

Fp2 . Thus E1,p and E2,p are supersingular. Hence p ≡ 5, 17, 20 mod 21.
Suppose that p ≡ 5, 17, 20 mod 21, that is p ≡ 2 mod 3 and p ≡ 3, 5, 6

mod 7, then E1,p and E2,p are supersingular. Notice that(
21

p

)
=

(
−3

p

)(
−7

p

)
= (−1) · (−1) = 1,

because p is inert in Z[ζ3] and Z
[

1
2 + 1

2

√
−7
]
. Thus the ideal (p) ⊂ OK splits and

OK/p ∼= Fp. Hence E1,p and E2,p are maximal over Fp2 .
The curve Dp is maximal over Fp2 if and only if p ≡ 5, 17, 20 mod 21.

Next we consider complex multiplication by Z[ζ3] and Z
[√
−2
]
:

Proposition 2.5. Let C be the curve over K = Q
(√
−6
)

defined by

v2 =
(
4 + 2

√
−6
)(
u2 − 1

)(
4u4 − 2

(
1 +
√
−6
)
u2 − 1

)
and p ⊂ OK a prime ideal above p 6= 2, 5. The curve C has good reduction at p.
The reduction of C at p is maximal over Fp2 if and only if p ≡ 5, 23 mod 24.

Proof. Let K = Q
(√
−6
)

and p ⊂ OK a prime ideal above p 6= 2, 5. Recall that
j(E1) = 0 if and only if 3b = c21. Observe that j(E2) = 2635 if and only if(

2b+ c22
)(

49b2 + 114bc22 + c42
)

= 0.

Choose c1 = −
√
−6, c2 = 2 and b = −2. The curve C is given by

v2 =
(
4 + 2

√
−6
)(
u2 − 1

)(
4u4 − 2

(
1 +
√
−6
)
u2 − 1

)
.

Since b = −2, c1 − c2 = −2−
√
−6, c21 + b = −8 and c22 + b = 2, the curves C, E1

and E2 have good reduction at p.
Since E1 has complex multiplication by Z[ζ3], the curve E1,p is supersingular

if and only if p = 3 or p ≡ 2 mod 3. Similar since E2 has complex multiplication
by Z

[√
−2
]
, the curve E2,p is supersingular if and only if p ≡ 5, 7 mod 8.

Suppose that Cp is maximal over Fp2 , that is E1,p and E2,p are maximal over
Fp2 , then the elliptic curves are supersingular. Hence p ≡ 5, 23 mod 24.
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Suppose that p ≡ 5 mod 24. The elliptic curves E1,p and E2,p are supersin-
gular. Notice that(

−6

p

)
=

(
−1

p

)(
−2

p

)(
−3

p

)
= (−1)

p−1
2 · (−1) · (−1) = 1,

because p ≡ 5 mod 8 and p is inert in Z[ζ3] and Z
[√
−2
]
. So the ideal (p) ⊂ OK

splits and OK/p ∼= Fp. Hence E1,p and E2,p are maximal over Fp2 .
Suppose that p ≡ 23 mod 24. Again the elliptic curves E1,p and E2,p are

supersingular, but the ideal (p) ⊂ OK is inert. Thus OK/p ∼= Fp2 . The curve E1,p

is given by

y2 =
(
x2 − 2

)(
x+
√
−6
)

= i3
(
x′

2
+ 2
)(
x′ +

√
6
)
,

where x = ix′. Observe that ζ8 ∈ Fp2 , because p2 ≡ 1 mod 8. So i is a square in

Fp2 . Also
√

6 ∈ Fp. Therefore E1,p is isomorphic (over Fp2) to an elliptic curve
over Fp. Hence E1,p is maximal over Fp2 . The curve E2,p is defined over Fp and
therefore maximal over Fp2 .

Hence Cp is maximal over Fp2 if and only if p ≡ 5, 23 mod 24.

The case of complex multiplication by Z[i] and Z[i]:

Proposition 2.6. Let D be the curve over K = Q defined by

v2 =
(
u2 − 4

)(
u4 + 10u2 + 16

)
and p 6= 2, 3 a prime. The curve D has good reduction at p. The reduction of D
at p is maximal over Fp2 if and only if p ≡ 3 mod 4.

Proof. Let K = Q and p 6= 2, 3 a prime. Recall that j(Ei) = 2633 if and only if
ci
(
9b+ c2i

)
= 0. Choose c1 = 9, c2 = −c1 and b = − 1

9c
2
1. The curve C is given by

v2 = 34
(
u2 − 1

)(
16u4 + 40u2 + 16

)
.

Since b = −9, c1 − c2 = 18 and c2i + b = 72, the curves C, E1 and E2 have good
reduction at p. Define the curve D over Q by

v′
2

=
(
u′

2 − 4
)(
u′

4
+ 10u′

2
+ 16

)
,

where u′ = 2u and v′ = 2
9v. The curves Cp and Dp are isomorphic over Fp.

The remainder of the proof is analogous to the proof of Proposition 2.2 with
complex multiplication by Z[i] instead.

The case of complex multiplication by Z[i] and Z
[

1
2 + 1

2

√
−7
]
:

Proposition 2.7. Let D be the curve over K = Q defined by

v2 =
(
u2 − 1

)(
u4 − 2u2 + 64

)
and p 6= 2, 3, 7 a prime. The curve D has good reduction at p. The reduction of D
at p is maximal over Fp2 if and only if p ≡ 3, 19, 27 mod 28.
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Proof. Let K = Q and p 6= 2, 3, 7 a prime. Recall that j(E1) = 2633 if and only if
c1
(
9b+ c21

)
= 0. Also recall that j(E2) = −3353 if and only if(

63b− c22
)(

81b2 + 81bc22 + 64c42
)

= 0.

Choose c1 = 0, c2 = −63 and b = 1
63c

2
2. The curve C is given by

v2 = 632
(
u2 − 1

)(
u4 − 2u2 + 64

)
.

Since b = 63, c1 − c2 = 63, c21 + b = 63 and c22 + b = 26327, the curves C, E1 and
E2 have good reduction at p. Define the curve D as

v′
2

=
(
u2 − 1

)(
u4 − 2u2 + 64

)
.

where v′ = v
63 . The curves Cp and Dp are isomorphic over Fp.

The remainder of the proof is analogous to the proof of Proposition 2.3.

The case of complex multiplication by Z[i] and Z
[√
−2
]
:

Proposition 2.8. Let D be the curve over K = Q defined by

v2 =
(
u2 − 1

)(
u4 − 2u2 − 1

)
and p 6= 2 a prime. The curve D has good reduction at p. The reduction of D at
p is maximal over Fp2 if and only if p ≡ 7 mod 8.

Proof. Let K = Q and p 6= 2 a prime. Recall that j(E1) = 2633 if and only if
c1
(
9b+ c21

)
= 0. Also recall that j(E2) = 2653 if and only if(

2b+ c22
)(

49b2 + 114bc22 + c42
)

= 0.

Choose c1 = 0, c2 = 2 and b = − 1
2c

2
2. The curve C is given by

v2 = 22
(
u2 − 1

)(
u4 − 2u2 − 1

)
.

Since b = −2, c1 − c2 = −2, c21 + b = −2 and c22 + b = 2, the curves C, E1 and E2

have good reduction at p. Define the curve D as

v′
2

=
(
u2 − 1

)(
u4 − 2u2 − 1

)
.

where v′ = v
2 . The curves Cp and Dp are isomorphic over Fp.

The remainder of the proof is analogous to the proof of Proposition 2.3.

The case of complex multiplication by Z
[

1
2 + 1

2

√
−7
]

and Z
[

1
2 + 1

2

√
−7
]
:

Proposition 2.9. Let D be the curve over K = Q defined by

v2 =
(
u2 − 1

)(
16u4 + 31u2 + 16

)
and p 6= 2, 3, 7 a prime. The curve D has good reduction at p. The reduction of D
at p is maximal over Fp2 if and only if p ≡ 3, 5, 6 mod 7.
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Proof. Let K = Q and p 6= 2, 3, 7 a prime. Recall that j(Ei) = −3353 if and only
if (

63b− c22
)(

81b2 + 81bc22 + 64c42
)

= 0.

Choose c1 = 2 · 63, c2 = −c1 and b = 1
63c

2
2. The curve C is given by

v2 = (8 · 63)
2(
u2 − 1

)(
16u4 + 31u2 + 16

)
.

Since b = 4 · 63, c1 − c2 = 4 · 63 and c2i + b = 2863, the curves C, E1 and E2 have
good reduction at p. Define the curve D as

v′
2

=
(
u2 − 1

)(
16u4 + 31u2 + 16

)
.

where v′ = v
8·63 . The curves Cp and Dp are isomorphic over Fp.

The remainder of the proof is analogous to the proof of Proposition 2.2.

The case of complex multiplication by Z
[

1
2 + 1

2

√
−7
]

and Z
[√
−2
]
:

Proposition 2.10. Let C be the curve over K = Q
(√
−14

)
defined by

v2 =
(
4 + 6

√
−14

)(
u2 − 1

)(
64u4 − 2

(
1 + 3

√
−14

)
u2 − 1

)
and p ⊂ OK a prime ideal above p 6= 2, 5, 13. The curve C has good reduction
at p. The reduction of C at p is maximal over Fp2 if and only if p = 7 or p ≡
5, 13, 31, 45, 47, 55 mod 56.

Proof. Let K = Q
(√
−14

)
and p ⊂ OK a prime ideal above p 6= 2, 5, 13. Recall

that j(E1) = −3353 if and only if
(
63b− c22

)(
81b2 + 81bc22 + 64c42

)
= 0. Also recall

that j(E2) = 2653 if and only if(
2b+ c22

)(
49b2 + 114bc22 + c42

)
= 0.

Choose c1 = −3
√
−14, c2 = 2 and b = −2. The curve C is given by

v2 =
(
4 + 6

√
−14

)(
u2 − 1

)(
64u4 − 2

(
1 + 3

√
−14

)
u2 − 1

)
.

Since b = −2, c1 − c2 = −2− 3
√
−14, c21 + b = −27 and c22 + b = 2, the curves C,

E1 and E2 have good reduction at p.
The remainder of the proof is analogous to the proof of Proposition 2.5.

The case of complex multiplication by Z
[√
−2
]

and Z
[√
−2
]
:

Proposition 2.11. Let D be the curve over K = Q defined by

v2 =
(
u2 − 1

)(
u4 + 6u2 + 1

)
and p 6= 2 a prime. The curve D has good reduction at p. The reduction of D at
p is maximal over Fp2 if and only if p ≡ 5, 7 mod 8.
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Proof. Let K = Q and p 6= 2 a prime. Recall that j(Ei) = 2653 if and only if(
2b+ c22

)(
49b2 + 114bc22 + c42

)
= 0.

Choose c1 = 4, c2 = −c1 and b = − 1
2c

2
1. The curve C is given by

v2 = 26
(
u2 − 1

)(
u4 + 6u2 + 1

)
.

Since b = −8, c1 − c2 = 8 and c2i + b = 8, the curves C, E1 and E2 have good
reduction at p. Define the curve D as

v′
2

=
(
u2 − 1

)(
u4 + 6u2 + 1

)
.

where v′ = v
8 . The curves Cp and Dp are isomorphic over Fp.

The remainder of the proof is analogous to the proof of Proposition 2.2.



Chapter 3

Hesse pencil and Galois
action on 3-torsion

Let k be a perfect field of characteristic different from two and three. Denote the
absolute Galois group of k by Gk. Given an elliptic curve E defined over k, we
have a Galois representation on the 3-torsion group E[3] of E. In this chapter we
discuss a family of elliptic curves that have equivalent Galois representations on
E[3]. Recall that the Galois representation on the 3-torsion of E and of another
elliptic curve E′ are equivalent if and only if E[3] is isomorphic to E′[3] as Gk-
modules.

We introduce the notion of a symplectic homomorphism as in [37]. Let E
and E′ be elliptic curves defined over k and φ : E[3] → E′[3] be a Gk-module
homomorphism. If

e3(S, T ) = e′3(φ(S), φ(T ))

for all S, T ∈ E[3] where e3 and e′3 are the Weil-pairings on the 3-torsion of E and
E′ respectively, then φ is called a symplectic homomorphism, otherwise φ is called
an anti-symplectic homomorphism.

Next we recall the definition of the Hessian of a polynomial. Let F ∈ k[X,Y, Z]
be a homogeneous polynomial of degree n. The Hessian Hess (F ) of F is the
determinant of the Hessian matrix of F , that is

Hess (F ) = det

 ∂2F
∂X2

∂2F
∂X∂Y

∂2F
∂X∂Z

∂2F
∂X∂Y

∂2F
∂Y 2

∂2F
∂Y ∂Z

∂2F
∂X∂Z

∂2F
∂Y ∂Z

∂2F
∂Z2

 ,

which is either a homogeneous polynomial of degree 3n− 6 or zero.
Given a curve C = Z(F ) with F ∈ k[X,Y, Z] homogeneous of degree three,

the Hesse pencil of C is defined as

C = Z(tF + Hess (F ))
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over k(t). Recall that the discrete valuations on k(t) correspond to the points
in P1(k), where we usually write (t0 : 1) as t0 and (1 : 0) as ∞. We denote the
reduced curve of C at t0 ∈ P1(k) by Ct0 . Notice that C∞ = C and for t0 6=∞

Ct0 = Z(t0F + Hess (F )).

In the special case that C = E is an elliptic curve given by a Weierstrass
equation, we have (see Section 3.1) that the point O at infinity is a point on Et0
for every t0 ∈ P1(k). If Et0 is a smooth curve, then this makes it an elliptic curve
with unit element O.

The goal of this chapter is to prove the following theorem:

Theorem 3.1. If E and E′ are elliptic curves given by some Weierstrass equation
defined over k, then Et0

∼=k E
′ for some t0 ∈ P1(k) if and only if there exists a

symplectic isomorphism E[3]→ E′[3].

In Sections 3.1, 3.2 and 3.3 we show that the 3-torsion groups of an elliptic curve
in Weierstrass form and its Hesse pencil are identical not only as sets, but also
have the same group structure and Weil-pairings. Using the Weierstrass form of
the Hesse pencil computed in Section 3.4 and the relation between a linear change
of coordinates and its restriction to the 3-torsion group described in Section 3.5,
we prove in Section 3.6 that an isomorphism of the 3-torsion groups respecting the
Weil-pairings is the restriction of a linear change of coordinates. The proof of the
theorem is completed in Section 3.7. We compare our results with existing results
in Section 3.9.

3.1 The flex points

Let C = Z(F ) be a curve with F ∈ k[X,Y, Z] homogeneous of degree n and
irreducible. A point P on C is called a flex point if there exists a line L such
that the intersection number of C and L at P is at least three. Notice that in our
definition P is allowed to be a singular point on C.

The Hessian curve of C is defined as Hess (C) = Z(Hess (F )).

Proposition 3.2. If P is a point on C and char (k) - n− 1, then P is a flex point
if and only if P ∈ C ∩Hess (C).

Proof. See [18, Exercise 5.23].

From now on we will only work with curves of degree three, so the proposition
above is only usable for fields k of characteristic different from two. This is the
reason for why we exclude characteristic two in most of this chapter; see Section 3.8
for the excluded case.

Corollary 3.3. If P is a flex point on C, then it is also a point on the Hesse
pencil C and it is again a flex point.
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This is a well-known and old result in the case of F = X3 + Y 3 + Z3, see for
example [51, Section VII.1].

Proof. A computation using Magma [4] shows that

Hess (tF + Hess (F )) = αF + βHess (F )

with α, β ∈ k[t].
Assume that P is a flex point, then P ∈ C ∩Hess (C) by Proposition 3.2, that

is F (P ) = 0 and Hess (F )(P ) = 0. So (tF + Hess (F ))(P ) = 0, which implies that
P ∈ C. The computation above also implies that

Hess (tF + Hess (F ))(P ) = 0,

that is P ∈ Hess (C). Therefore P ∈ C ∩Hess (C). Hence P is a flex point on C by
Proposition 3.2.

Corollary 3.4. Let P ∈ Ct0 ∩ Ct1 . If t0 6= t1, then P is a flex point on C.

Proof. Suppose that t0 = (t00 : t01) and t1 = (t10 : t11), then(
t00 t01

t10 t11

)(
F (P )

Hess (F )(P )

)
=

(
0
0

)
,

with the matrix being invertible since t0 6= t1. Thus F (P ) = 0 and Hess (F )(P ) =
0, that is P ∈ C ∩ Hess (C). Hence Proposition 3.2 implies that P is a flex point
on C.

3.2 The 3-torsion group

Let E = Z(F ) be an elliptic curve with unit element O and F ∈ k[X,Y, Z]
homogeneous of degree 3.

Proposition 3.5. Let S and T be points on E. If S is a flex point, then T is a
flex point if and only if S − T ∈ E[3].

Proof. Let LS and LT be the tangent lines to E at S and T respectively.
Assume that T is also a flex point. Consider the function LS

LT
on E which has

divisor 3(S) − 3(T ). From [61, Corollary III.3.5] it follows that 3S − 3T = O.
Hence S − T ∈ E[3].

Assume that T is not a flex point. Now the divisor of the function LS
LT

is
3(S)− 2(T )− (T ′) with T ′ 6= T . From this it follows that 3S − 2T − T ′ = O, thus
3S − 3T = T ′ − T 6= O. Hence S − T /∈ E[3].

This result tells us that if O is a flex point on E, then the concepts of flex point
and 3-torsion point coincide. In the previous section we learned that a flex point
on E is also a flex point on E . Hence if we combine these statements, then we
obtain E[3] ⊂ E [3]. Since the characteristic of k is different from three, these sets



32 3. HESSE PENCIL AND GALOIS ACTION ON 3-TORSION

are equal in size, thus the same. Moreover suppose that Et0 for some t0 ∈ P1(k)
is non-singular. Provide E and Et0 with a group structure by taking O as the unit
element. Since the flex points of E and Et0 are the same and a line that intersects
an elliptic curve at two flex points will also intersect the curve at a third flex point,
the group structures on E [3] and Et0 [3] are equal as well.

Recall that if the unit element O is a flex point on E, then we can find a
projective linear transformation in PGL3(k) such that E is given by a Weierstrass
equation in the new coordinates. Moreover since the characteristic of k is different
from two and three, we may even assume that E : y2 = x3 + ax + b for some
a, b ∈ k.

3.3 The Weil-pairing

In the previous section we saw that E [3] = Et0 [3] for all t0 ∈ P1
(
k
)

such that
Et0 is non-singular. Denote the Weil-pairing on the 3-torsion of E by e3 and on
the 3-torsion of Et0 by et03 . An introduction to Weil-pairings can be found in [61,
Section III.8] and [74, Sections 3.3 and 11.2].

Proposition 3.6. Let E be an elliptic curve given by a Weierstrass equation and
let E be its Hesse pencil. The Weil-pairings e3 and et03 on E[3] are equal.

Proof. Let S, T ∈ E[3] generate E[3]. The Weil-pairing is determined by its value
on (S, T ). Follow [61, Exercise 3.16] to construct the Weil-pairings. Recall that O
is a flex point on E.

Let LO, LS , LT and L−T be the tangent lines to E at O, S, T and −T
respectively. Define DS = (S) − (O) and DT = 2(T ) − 2(−T ). Notice that
DS and DT have disjoint support. Since 2T − 2(−T ) = T in E , it follows that

DT ∼ (T ) − (O). Consider the functions fS = LS
LO

and fT =
(
LT
L−T

)2

, then

div (fS) = 3DS and div (fT ) = 3DT . The Weil-pairing on E is defined as

e3(S, T ) =
fS(DT )

fT (DS)

=

(
fS(T )

fS(−T )

)2
fT (O)

fT (S)

=

(
LS(T )LO(−T )LT (O)L−T (S)

LO(T )LS(−T )L−T (O)LT (S)

)2

.

Let s ∈ k(S, T )(t) be a local coordinate at t0. Choose the equations of the
tangent lines such that they are also defined over k(S, T )[[s]] and are non-zero
modulo s. Notice that LO, LS , LT and L−T modulo s are tangent lines to Et0
at O, S, T and −T respectively. Follow the construction above to obtain the
Weil-pairing et03 (S, T ) on Et0 .

Now LO(T ) is a unit in k(S, T )[[s]], because T is not contained in the tangent
line LO modulo s to Et0 at O. Similarly the other terms in the expression of
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e3(S, T ) are units as well. Thus by construction e3(S, T ) mod s = et03 (S, T ). Recall
that e3(S, T ) is a root of unity. Hence e3 = et03 .

3.4 The Weierstrass form

Proposition 3.7. Let E be an elliptic curve given by the Weierstrass equation
y2z = x3 + axz2 + bz3 with a, b ∈ k. Then the Hesse pencil E can be given by

ty2z + 3xy2 = tx3 − 3ax2z + (at− 9b)xz2 +
(
bt+ a2

)
z3

over k(t). The linear change of coordinatesxy
z

 = A

ξη
ζ

 with A =

 t 0 3at2 − 27bt− 9a2

0 1 0
−3 0 t3 + 9at− 27b


transforms this into the Weierstrass form EW : η2ζ = ξ3 + atξζ

2 + btζ
3, with

at = at4 − 18bt3 − 18a2t2 + 54abt−
(
27a3 + 243b2

)
bt = bt6 + 4a2t5 − 45abt4 + 270b2t3 + 135a2bt2

+
(
108a4 + 486ab2

)
t−
(
243a3b+ 1458b3

)
.

Moreover ∆
(
EW
)

= ∆(E)(detA)
3

and detA = t4 + 18at2 − 108bt− 27a2.

Observe that the t in the proposition is equal to 8t in the previous sections.

Proof. The proof boils down to computing the map A, which can be found in three
steps. First map the tangent line to E at O to the line at infinity. Next scale the
z-coordinate so that the coefficient in front of x3 and y2z are equal up to minus
sign. Finally shift the x-coordinate so that the x2z term vanishes.

This proposition shows that

j(E) = 1728
4

4a3 + 27b2

(
at4 − 18bt3 − 18a2t2 + 54abt−

(
27a3 + 243b2

)
t4 + 18at2 − 108bt− 27a2

)3

.

3.5 Linear change of coordinates I

Proposition 3.8. Let Pi ∈ P2(k) for i = 1, ..., 4 be points such that no three of
them are collinear. If Qi ∈ P2(k) for i = 1, ..., 4 is another such set of points, then
there exists a unique A ∈ PGL3(k) such that A(Pi) = Qi for all i = 1, ..., 4.

This is a well-known result. For convenience we include a proof. Observe that
an analogous result holds for two sets of n+ 2 points in Pn(k) such that no n+ 1
of them lie on a hyperplane.
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Proof. Recall that A ∈ PGL3(k) can be represented by a B ∈ GL3(k) which is
unique up to a scalar multiple. Let Pi = (xi : yi : zi) and Qi = (x̃i : ỹi : z̃i) for
i = 1, 2, 3, 4. Define ui = (xi, yi, zi) and vi = (x̃i, ỹi, z̃i) for i = 1, 2, 3, 4. Then
A(Pi) = Qi if and only if Bui = λivi for some non-zero λi ∈ k.

The set {u1, u2, u3} is a basis of k3 as the following argument shows: Suppose
that u1, u2, u3 are linearly dependent, that is a1u1 + a2u2 + a3u3 = 0 for some
a1, a2, a3 ∈ k not all zero. In particular assume without loss of generality that
a3 = −1, then u3 = a1u1 + a2u2. Let L : b · (x, y, z) = 0 with b ∈ k3 be the line
containing P1 and P2, then b · u3 = a1b · u1 + a2b · u2 = 0, that is L contains P3 as
well, which is impossible by assumption. Hence {u1, u2, u3} is a basis of k3.

Write u4 = α1u1 + α2u2 + α3u3 for some αi ∈ k. A reasoning along the same
lines as above shows that each αi must be non-zero. Similarly {v1, v2, v3} is a basis
of k3 and v4 = β1v1 + β2v2 + β3v3 for some non-zero βi ∈ k.

Let B ∈ GL3(k) be such that ui maps to βi
αi
vi for i = 1, 2, 3, then

Bu4 = Bα1u1 +Bα2u2 +Bα3u3 = β1v1 + β2v2 + β3v3 = v4.

Hence the induced A ∈ PGL3(k) maps Pi to Qi for i = 1, 2, 3, 4.
Suppose that B′ ∈ GL3(k) maps ui to λivi for i = 1, 2, 3, 4, then

β1λ4v1 + β2λ4v2 + β3λ4v3 = λ4v4 = B′u4

= α1B
′u1 + α2B

′u2 + α3B
′u3

= α1λ1u1 + α2λ2u2 + α3λ3u3,

so that λi = βi
αi
λ4 for i = 1, 2, 3. Thus B′ = λ4B so that B and B′ represent the

same A ∈ PGL3(k). Hence A is unique.

Proposition 3.9. Let E be an elliptic curve given by a Weierstrass equation
defined over k. If E[3] = 〈S, T 〉, then any line in P2

(
k
)

contains at most two of
the following points: O, S, T , S + T .

Proof. Suppose that L is a line in P2
(
k
)

containing three of the points O, S, T
and S + T . Denote these by P1, P2 and P3. Since E is given by a Weierstrass
equation, O is a flex point, thus P1 +P2 +P3 = O. However this is impossible for
the points mentioned above. Hence such a line L does not exist.

Suppose that we are given two elliptic curves E and E′ as in the proposition
above with E[3] = 〈S, T 〉 and E′[3] = 〈S′, T ′〉, then Propositions 3.8 and 3.9 imply
that there exists an A ∈ PGL3

(
k
)

such that O 7→ O′, S 7→ S′, T 7→ T ′ and
S + T 7→ S′ + T ′ and that this A is unique.

3.6 Linear change of coordinates II

Proposition 3.10. Let E and E′ be elliptic curves given by a Weierstrass equation
defined over k. If φ : E[3] → E′[3] is an isomorphism which respects the Weil-
pairings, then there exists a linear change of coordinates Φ : Et0 → E′ for some
t0 ∈ P1

(
k
)

such that Φ|E[3] = φ.
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The essence of the proof of this proposition is the following: We determine the
ti ∈ P1

(
k
)

for which the j-invariant of Eti is equal to the j-invariant of E′. For
each of these ti’s we obtain a number of linear changes of coordinates Eti → E.
A counting argument shows that φ is the restriction of one of those maps. The
following observation is used in the counting argument:

Lemma 3.11. Let E and E′ be elliptic curves. Then 24 out of the 48 isomor-
phisms E[3]→ E′[3] respect the Weil-pairings.

Proof. Let S, T ∈ E[3] be such that E[3] = 〈S, T 〉 and e3(S, T ) = ζ3 with ζ3 a
fixed primitive third root of unity. Choose S′, T ′ ∈ E′[3] likewise. Since E[3] and
E′[3] are two-dimensional vector spaces over F3, there exists a bijection

GL2(F3) −→ Iso (E[3], E′[3])

A =

(
a b
c d

)
7−→ φA(αS + βT ) = (αa+ βb)S′ + (αc+ βd)T ′.

Notice that

e′3(φA(S), φA(T )) = e′3(aS′ + bT ′, cS′ + dT ′)

= e′3(S′, T ′)
ad−bc

= ζdetA
3

So φA respects the Weil-pairings if and only if detA = 1, that is A ∈ SL2(F3). Now
|GL2(F3)| = 48 and [GL2(F3) : SL2(F3)] = 2. Hence there are 48 isomorphisms
E[3]→ E′[3] of which 24 respect the Weil-pairings.

Next we prove the proposition.

Proof of Proposition 3.10. Let j0 and j′0 be the j-invariants of E and E′ respec-
tively. Denote the reduced curve of EW at t0 ∈ P1

(
k
)

by EWt0 . If EWt0 is non-
singular, then let At0 : Et0 → EWt0 be the isomorphism induced by the linear
change of coordinates A from Proposition 3.7 at t0.

Assume that j′0 6= j0, 0, 1728. Consider the polynomial

G = −1728(4at)
3 − j′0∆

(
EW
)

= (j0 − j′0)∆(E) t12 + 21336a2b t11 + . . .

in k[t], whose roots give EWt0 ’s with j-invariant equal to j′0. The polynomial G has
degree 12 and its discriminant is

−3147j′0
8
(j′0 − 1728)

6
∆(E)

44
,

which is non-zero, so G has distinct roots t1, . . . , t12 in k. Since the j-invariant of
EWti is equal to j′0, there exists an isomorphism Ψi : EWti → E′. An isomorphism
respects the Weil-pairings, see [61, Proposition III.8.2] or [74, Theorem 3.9]. From
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Sections 3.2 and 3.3 it follows that Eti [3] = E[3] as groups with identical Weil-
pairings. Therefore for every i = 1, . . . , 12 and σ ∈ Aut (E′) ∼= Z/2Z

φi,σ = (σ ◦Ψi ◦Ati)|Eti [3] : E[3]→ E′[3]

is an isomorphism respecting the Weil-pairings. Notice that σ◦Ψi◦Ati is an element
of PGL3

(
k
)
, because EWti and E′ are in Weierstrass form and A is a linear change

of coordinates. All 24 isomorphisms φi,σ are distinct as the following argument
shows. Suppose that φi,σ = φj,τ , then σ ◦ Ψi ◦ Ati = τ ◦ Ψj ◦ Atj according

to Section 3.5. Let P ∈ E′ \ E′[3], then Q = (σ ◦Ψi ◦Ati)
−1

(P ) is a point in
Eti ∩Etj , so Corollary 3.4 implies that ti = tj , that is i = j. Since Ψi and Ati are
isomorphisms, σ = τ . Thus φi,σ = φj,τ if and only if i = j and σ = τ . Since the
φi,σ’s respect the Weil-pairings, Lemma 3.11 implies that these are all the possible
isomorphisms E[3] → E′[3] that respect the Weil-pairings. Hence φ = φi,σ for
some i = 1, . . . , 12 and σ ∈ Aut (E′), which proves the proposition in this case.

Suppose that j′0 = j0 and j′0 6= 0, 1728, then the G above has degree 11 and
the discriminant of G is

−21303195a20b10∆(E)
30
,

which is again non-zero, so G has distinct roots t1, . . . , t11 in k. In this case the
j-invariant of E∞ is also equal to j′0, so let t12 = ∞. The argument presented
before now finishes the proof in this case.

Assume that j′0 = 0. This case is the same as before with the exception of the
polynomial G, which in this case should be replaced by at. The four distinct ti’s
and the six elements in Aut (E′) again give 24 isomorphisms φi,σ.

Finally, if j′0 = 1728, then replace G by bt and proceed as before.

3.7 Proof of the theorem

In the proof of Theorem 3.1 we need a result from Galois cohomology, namely:

Lemma 3.12. If k is a perfect field, then PGL3

(
k
)Gk

= PGL3(k).

Proof. Consider the short exact sequence of Gk-groups

1 −→ k
∗ −→ GL3

(
k
)
−→ PGL3

(
k
)
−→ 1,

which induces the exact sequence in the first row of the diagram

1 // k
∗Gk // GL3

(
k
)Gk // PGL3

(
k
)Gk // H1

(
Gk, k

∗)

1 // k∗ //

OO

GL3(k) //

OO

PGL3(k) //

OO

1.

The second row is the definition of PGL3(k) and the vertical maps are the inclusion

maps. Hilbert’s Theorem 90 gives that H1
(
Gk, k

∗)
= {1}. Since k

∗Gk
= k∗ and

GL3

(
k
)Gk

= GL3(k), also PGL3

(
k
)Gk

= PGL3(k).
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Proof of Theorem 3.1. Assume that Φ : Et0 → E′ for some t0 ∈ P1(k) is an iso-
morphism defined over k. This map respects the Weil-pairings according to [61,
Proposition III.8.2]. So Φ|Et0 [3] : Et0 [3] → E′[3] is a symplectic isomorphism. In

Sections 3.2 and 3.3 it was shown that E[3] = Et0 [3] as groups and have identi-
cal Weil-pairings. Thus Φ|Et0 [3] can be considered as a symplectic isomorphism

E[3]→ E′[3]. Hence Φ|Et0 [3] is the desired map.

Suppose that there exists a symplectic isomorphism φ : E[3] → E′[3], then
Proposition 3.10 implies that there exists a Φ ∈ PGL3

(
k
)

and a t0 ∈ P1
(
k
)

such
that Φ : Et0 → E′ and φ = Φ|E[3]. Since σ ◦ φ = φ ◦ σ for all σ ∈ Gk,

σ(Φ)(σ(S)) = σ ◦ Φ(S) = σ ◦ φ(S) = φ ◦ σ(S) = Φ(σ(S))

for all S ∈ E[3], so Propositions 3.8 and 3.9 imply that σ(Φ) = Φ. Therefore
Lemma 3.12 implies that Φ ∈ PGL3(k). Hence t0 ∈ P1(k) and E′ ∼=k Et0 .

3.8 Characteristic two

In this chapter we assumed k is a perfect field of characteristic different from two
and three. Tuijp in [70] adapts the proof of Theorem 3.1 to characteristic two:
She replaces the polynomial Hess (F ) by the 3-division polynomial of the elliptic
curve, which is turned into a cubic in x and y by replacing x4 by lower degree
terms using the Weierstrass equation, see [70, Propositions 2.1 and 2.3]. Hence a
result similar to Theorem 3.1 is true in characteristic two by a similar proof.

3.9 Comparison with the literature

Theorem 3.1 is part of a more general problem: Given an elliptic curve E over a
field k and an integer n, describe the universal family of elliptic curves E such that
for each member Et0 the Galois representations on E[n] and Et0 [n] are isomorphic
and the isomorphism is symplectic. For various n explicit families are known in
the literature.

In [53] Rubin and Silverberg construct for any elliptic curve over Q such an
explicit family for n = 3 and n = 5. Their proofs are motivated by the theory
of modular curves. Our Theorem 3.1 corresponds roughly to [53, Theorem 4.1]
and [53, Remark 4.2].

Using invariant theory and a generalization of the classical Hesse pencil, Fisher
in [17] describes such families for elliptic curves defined over a perfect field of
characteristic not dividing 6n with n = 2, 3, 4, 5. Theorem 3.1 is a special case
of [17, Theorem 13.2]. It is unclear whether Fisher’s proof of [17, Theorem 13.2]
can be adapted to the case of characteristic two. Tuijp in [70] showed that the
argument in this chapter is adaptable to characteristic two.

The Hesse pencil is also used by Kuwata in [37]. For any elliptic curve E
over a number field he constructs two families of elliptic curves such that for each
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member the Galois representation on its 3-torsion is equivalent to the one on E[3].
In the first family the isomorphism of the 3-torsion groups is symplectic, whereas
in the second family the isomorphism is anti-symplectic. The proofs use classical
projective geometry and the classification of rational elliptic surfaces. Theorem 3.1
is essentially [37, Theorem 4.2]. Notice that the Weierstrass form of the Hesse
pencil in [37, Remark 4.4] is the same as the one in Proposition 3.7 with t replaced
by t−1 and the x and y coordinates scaled by some power of t.

An overview of the classical Hesse pencil is given by Artebani and Dolgachev
in [1].



Chapter 4

Jacobian variety of the
Mestre curve

Mestre in [44] constructed from two given elliptic curves a hyperelliptic curve
admitting independent morphisms to the two given curves. The resulting curve is
used by Stewart and Top in [67, Theorem 3] to construct a family of twists of a
given elliptic curve over Q such that infinitely many members have Mordell-Weil
rank at least two. In this chapter we show that the rank is in general at most two
by studying the Jacobian variety of the Mestre curve.

We briefly recall the construction of a family of twists of a given elliptic curve
E described in [67]. Let E be an elliptic curve over a field k of characteristic
different from 2 and 3. Suppose that j(E) 6= 0, 1728 and y2 = x3 + ax + b is a
short Weierstrass equation for E. Let f ∈ k[S] be a separable polynomial and let
C be the hyperelliptic curve over k corresponding to the function field k(s, t) with
t2 = f(s). In this case a (quadratic) twist Ed of E is the elliptic curve over k
given by the equation dy2 = x3 +ax+ b with d ∈ k∗ unique up to squares, see [61,
Proposition X.5.4]. The family of twists of E is constructed by specifying a set of
d’s, namely the values of f(s0) for s0 ∈ k. In other words the twists are obtained
from Ef(s) by specialization. The specialization map

Ef(s)(k(s)) −→ Ef(s0)(k(s0))

is an injective homomorphism for all but finitely many s0 ∈ k, see [60, Theorem C].
Hence the rank of the twists is related to the rank of Ef(s)(k(s)).

The rank of Ef(s)(k(s)) is closely related to the decomposition of the Jacobian
variety Jac (C) of C into simple abelian varieties, which we will illustrate now.
Notice that Ef(s) is isomorphic over k(C) to E, via (x, y) 7→ (x, ty). The group
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E(k(C)) is isomorphic to Mork(C,E). Moreover

Ef(s)(k(C)) // E(k(C)) // Mork(C,E)

Ef(s)(k(s)) //

OO

{P : ι∗(P ) = −P} //

OO

{φ : φ ◦ ι = [−1] ◦ φ}

OO

is a commutative diagram with ι : C → C the hyperelliptic involution, the hori-
zontal maps isomorphims and vertical maps inclusions. The Albanese property of
Jac (C) implies that

Mork,∆(C × C,E) := {ψ ∈ Mork(C × C,E) : ψ ◦∆ = 0} ∼= Homk(Jac (C), E)

with ∆ : C → C × C the diagonal morphism, see [46, Proposition 6.4]. Consider
the homomorphism Mork(C,E)→ Mork,∆(C × C,E) defined as

φ 7−→ ((P1, P2) 7→ φ(P1)− φ(P2)).

We obtain the following commutative diagram

0 // E(k) // Mork(C,E) // Mork,∆(C × C,E)

0 // E(k)[2] //

OO

{φ : φ ◦ ι = [−1] ◦ φ} //

OO

{ψ : ψ ◦ (ι× ι) = [−1] ◦ ψ}

OO

with exact rows and vertical inclusions. Observe that the condition ψ ◦ (ι× ι) =
[−1] ◦ ψ is empty, because C is hyperelliptic. Let l be a finite Galois extension of
k such that C has a l-rational point. The corresponding sequence for l

0 // E(l)[2] // {ϕ : ϕ ◦ ι = [−1] ◦ ϕ} // Morl,∆(C × C,E) // 0

is a short exact sequence of Gal (l/k)-modules. Since Gal (l/k) and E(l)[2] are
finite groups, the group H1(Gal (l/k), E(l)[2]) is also finite. From the long exact
sequence from Galois cohomology follows that

rank {φ : φ ◦ ι = [−1] ◦ φ} = rank Mork,∆(C × C,E).

Hence the rank of Ef(s)(k(s)) is equal to the rank of Homk(Jac (C), E), which is
equal to number of factors isogeneous over k to E in the decomposition of Jac (C)
into simple abelian varieties.

We recall the construction of the Mestre curve in Section 4.1. In Section 4.2 we
compute automorphisms of this curve and use them in Section 4.3 to decompose the
Jacobian variety of the Mestre curve. We show in Section 4.4 that a 2-dimensional
factor of the Jacobian variety of the Mestre curve is geometrically simple for k =
Q(a, b) a function field over Q in two variables, but in Section 4.5 we find pairs
a, b ∈ Q for which this factor most likely is not simple.



4.1. MESTRE CURVE 41

4.1 Mestre curve

We recall the construction of a hyperelliptic curve described in [44, Theorem 3]
and derive an affine model for a special case as was done in [49, Section 4.2].

Let k be a field of characteristic different from 2 and 3. Suppose that E and
E′ are elliptic curves over k with j-invariant not both equal to 0 or 1728. Choose
short Weierstrass equations y2 = f(x) and y′

2
= f ′(x′) for E and E′ respectively,

where

f(x) = x3 + ax+ b

f ′(x′) = x′
3

+ a′x′ + b′

with a, b, a′, b′ ∈ k. Proceed as if these curves are isomorphic over k, that is there
exists a u such that x′ = u2x and y′ = u3y. Substitute these relations into the
equations above to obtain

f ′
(
u2x

)
=
(
u3y
)2

= u6y2 = u6f(x).

Since the degree two terms in f and f ′ are zero, the equation can be rewritten as
x = ρ(u) with

ρ(u) = − bu6 − b′

au6 − a′u2
.

The assumptions on the j-invariants guarantee ρ is well-defined and non-zero. The
curve C is defined by y2 = f ◦ρ(u) and it comes with the obvious maps π : C → E
and π′ : C → E′.

The curve C is called the Mestre curve if E = E′. Restricting to this case
and using the change of coordinates from [49, Subsection 4.2.2] with a different

constant, that is v = a2
(
u2 + 1

)2
u3y, we obtain the following equation for C

v2 = gab(u) := −ab
(
u2 + 1

)[
b2
(
u4 + u2 + 1

)3
+ a3

(
u2 + 1

)2
u4
]
.

The discriminant of gab is −214a50b50
(
4a3 + 27b2

)6
. In this case the morphisms

π : C → E and π′ : C → E become

(u, v) 7−→

(
− b
a

u4 + u2 + 1

(u2 + 1)u2
,

1

a2

v

(u2 + 1)
2
u3

)
and

(u, v) 7−→

(
− b
a

u4 + u2 + 1

u2 + 1
,

1

a2

v

(u2 + 1)
2

)
respectively.

Unfortunately the construction does not seem to work in characteristic 2 and
3, because in these characteristics elliptic curves need not have a short Weierstrass
equation as above. One can try the alternative short forms of the Weierstrass as
given in [61, Proposition A.1.1]. In characteristic 3 and non-zero j-invariant one
obtains a relation x2 = ρ̃(u), which is non-linear in x. In characteristic 2 it is
unclear what the equivalent of x = ρ(u) should be.
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4.2 Galois theory

We will compute automorphisms of the Mestre curve C to obtain morphisms from
C to curves of lower genus. In the next section we use these to decompose Jac (C)
into a product of lower dimensional abelian varieties.

The automorphisms of C include the hyperelliptic involution and one derived
in [49, Subsection 4.2.1]. Using Magma for the case a = 1 and b = 1 over Q,
we find eight automorphisms of C which as a group is isomorphic to the dihedral
group D4 =

〈
ρ, σ : ρ4 = 1, σ2 = 1, σρσ = ρ−1

〉
with ρ : C → C and σ : C → C

given by

(u, v) 7−→
(
− 1

u
,− v

u7

)
and

(u, v) 7−→ (−u,−v)

respectively. Notice that ρ2 is equal to the hyperelliptic involution. In fact these
morphisms define automorphisms of C in general. Hence Aut (C) contains a sub-
group isomorphic to D4.

Given a subgroup H ⊂ D4, we get a curve CH and a morphism πH : C → CH .
If H contains the hyperelliptic involution, then CH is isomorphic to P1. If H
does not contain the hyperelliptic involution, then H must be equal to 〈σ〉,

〈
ρ2σ
〉
,

〈ρσ〉 or
〈
ρ3σ
〉
. The first two subgroups are conjugate subgroups (by ρ), so the

corresponding CH ’s are isomorphic. The same applies to the latter two subgroups.
The curve C〈σ〉 is given by the equation

η2 = hab(ξ) := −abξ(ξ + 1)
[
b2
(
ξ2 + ξ + 1

)3
+ a3(ξ + 1)

2
ξ2
]

and the morphism π〈σ〉 : C → C〈σ〉 is given by (u, v) 7→
(
u2, uv

)
1. The discrimi-

nant of hab is equal to −a26b28
(
4a3 + 27b2

)3
.

The curve C〈ρσ〉 is given by the equation

η̃2 = h̃ab

(
ξ̃
)

:= −abξ̃
(
ξ̃ − 2

)[
b3
(
ξ̃2 − 1

)3

+ a3ξ̃2

]
and the morphism π〈ρσ〉 : C → C〈ρσ〉 sends (u, v) 7→

(
u+ 1

u ,
u−1
u4 v

)
. In this case

the discriminant of h̃ab is 28a26b26
(
4a3 + 27b2

)4
.

We repeat the same procedure for C〈σ〉. The automorphism group of C〈σ〉
contains a subgroup of four elements generated by the hyperelliptic involution ι
and the morphism α : C〈σ〉 → C〈σ〉 given by (ξ, η) 7→ (−ξ − 1, η).

Consider the subgroup 〈α〉. In this case C〈σ〉,〈α〉 is simply the curve E and the
morphism π〈σ〉,〈α〉 : C〈σ〉 → E is given by

(ξ, η) 7−→

(
− b
a

ξ2 + ξ + 1

ξ2 + ξ
,

1

a2

η

ξ2(ξ + 1)
2

)
.

1The curve C〈σ〉 and the morphism π〈σ〉 correspond to the curve C′ and π′
1 in the proof of

[49, Proposition 4.8]
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Notice that π : C → E statisfies π = π〈σ〉,〈α〉 ◦ π〈σ〉.
The subgroup 〈ι ◦ σ〉 corresponds to the curve C〈σ〉,〈ι◦α〉 given by

y′
2

=
(
x3 + ax+ b

)
(ax+ b)(ax− 3b)

and the morphism π〈σ〉,〈ι◦α〉 : C〈σ〉 → C〈σ〉,〈ι◦α〉 is given by

(ξ, η) 7−→

(
− b
a

ξ2 + ξ + 1

ξ2 + ξ
,
b

a2

η

ξ3〈ξ + 1〉3

)
.

The discriminant is −16a2b10
(
4a3 + 27b2

)3
.

We also repeat the above procedure for C〈ρσ〉 and C〈σ〉,〈ι◦α〉, but only find the
identity morphism and the hyperelliptic involution. Hence we do not find new
morphims to curves of lower genus.

4.3 Idempotent relations

The automorphisms of C induce idempotent relations on the Jacobian variety
Jac (C) of C and thereby possibly decompose Jac (C) into a product of abelian
varieties, see for example [32].

We apply this method to C. Recall that D4 is a subgroup of the automorphism
group of C. This group admits the partition

D4 = 〈ρ〉 ∪ 〈σ〉 ∪ 〈ρσ〉 ∪
〈
ρ2σ
〉
∪
〈
ρ3σ
〉
.

Using [32, Theorem B] we find that Jac (C)
4 × Jac (CD4

)
8

is isogeneous to

Jac
(
C〈ρ〉

)4 × Jac
(
C〈σ〉

)2 × Jac
(
C〈ρσ〉

)2 × Jac
(
C〈ρ2σ〉

)2 × Jac
(
C〈ρ3σ〉

)2
.

Recall that CD4
and C〈ρ〉 are isomorphic P1, so their Jacobian varieties are trivial.

Also C〈σ〉 ∼= C〈ρ2σ〉 and C〈ρσ〉 ∼= C〈ρ3σ〉. Hence the Poincaré Irreducibility Theorem
(see [45, Proposition 12.1]) implies that

Jac (C) ∼ Jac
(
C〈σ〉

)
× Jac

(
C〈ρσ〉

)
.

Instead we can also apply [32, Theorem B] to the subgroup
〈
ρ2, σ

〉
, which gives

Jac (C)
2 × Jac

(
C〈ρ2,σ〉

)4 ∼ Jac
(
C〈ρ2〉

)2 × Jac
(
C〈σ〉

)2 × Jac
(
C〈ρ2σ〉

)2
.

Similar to before, this reduces to

Jac (C) ∼ Jac
(
C〈σ〉

)2
.

Observe that Jac
(
C〈σ〉

)
and Jac

(
C〈ρσ〉

)
are in fact isogeneous by the Poincaré

Irreducibility Theorem.
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Now we apply the same method to C〈σ〉. Recall that 〈ι, α〉 is a subgroup of the
automorphism group of C〈σ〉. Using [32, Theorem B] we find that

Jac
(
C〈σ〉

)2 × Jac
(
C〈σ〉,〈ι,α〉

)4 ∼ Jac
(
C〈σ〉,〈ι〉

)2 × Jac
(
C〈σ〉,〈α〉

)2 × Jac
(
C〈σ〉,〈ια〉

)2
Notice that C〈σ〉,〈ι,α〉 and C〈σ〉,〈ι〉 are isomorphic to P1. Also C〈σ〉,〈α〉 ∼= E. So

Jac
(
C〈σ〉

)
∼ E × Jac

(
C〈σ〉,〈ια〉

)
.

To summarize:

Proposition 4.1. The Jacobian variety of C is isogeneous over k to

E2 × Jac
(
C〈σ〉,〈ια〉

)2
.

Proof. Combine the isogenies from the previous discussion. Notice that all the
isogenies above are defined over k, because the mentioned automorphisms of C
and C〈σ〉 are defined over k.

4.4 Geometrically simple

In this section we show that the Jacobian variety of D := C〈σ〉,〈ια〉 is in general
simple. More concretely, we restrict to k = Q(a, b) and show that D is simple over
any finite extension of Q(a, b).

We view the curve D as the generic fibre of the family of curves

D −→ D
(
ab
(
4a3 + 27b2

))
⊂ A2,

where D(f) = A2 \ Z(f). If the Jacobian variety of some special fibre, say the
curve Da0,b0 above the closed point (a0, b0), is simple, then Jac (D) is also simple.
Similarly we can view Da0,b0 as the generic fibre of a family of curves

Da0,b0 −→ Spec
(
Z(p)

)
for some prime p ∈ Z. Again if the Jacobian variety of the special fibre Da0,b0,p

over Fp is simple, then so is Jac (Da0,b0). In the case of an abelian variety over a
finite field, an irreducible characteristic polynomial of Frobenius implies that the
variety is simple. Combine the previous three steps and we obtain a method to
show that the Jacobian variety of D is in general simple.

Proposition 4.2. The Jacobian variety of D1,1,17 is geometrically simple.

The proof of the proposition is similar to the proof of [21, Proposition 2].

Proof. Recall that D1,1 is the hyperelliptic curve over Q defined by

y2 =
(
x3 + a0x+ b0

)
(a0x+ b0)(a0x− 3b0)
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with a0 = 1 and b0 = 1. Since the discriminant of the right-hand side equals
−24313, the curve D1,1 has good reduction at p = 17. Denote the reduction
D1,1,17 of D1,1 at p = 17 by D̄.

Suppose that Jac
(
D̄
)

is not geometrically simple, then for some finite extension

k of F17 the abelian variety Jac
(
D̄k

)
is isogeneous to a product of two elliptic

curves. The characteristic polynomial of Frobenius on D̄ is χ = t4 + 2t3 + 18t2 +
34t + 289, which is irreducible over Q. Let π ∈ Q̄ be a root of χ. Then πn

with n = [k : F17] is a root of the reducible characteristic polynomial of Frobenius
on D̄k. Thus Q(πn) is a proper subfield of Q(π). The proper subfields of Q(π)
are Q and Q

(√
17
)
. So Q(πn) ⊂ Q

(√
17
)
. Consider an embedding Q(π) → C.

According to the Weil conjectures |π| =
√

17. Since πn ∈ Q
(√

17
)
→ R implies

πn = ±
√

17
n
, π√

17
is a root of unity. However the minimal polynomial of π√

17
is

t4 + 2t3 + 50
17 t

2 + 2t+ 1, which is not a cyclotomic polynomial.

Corollary 4.3. The Jacobian variety of the curve D over Q(a, b) is also geomet-
rically simple.

4.5 Computer search

Although the Jacobian variety of D over Q(a, b) is geometrically simple, it may
happen that for certain pairs a0, b0 the Jacobian variety of Da0,b0 is isogeneous to
a product of elliptic curves. Using Magma [4] we search for such pairs a0, b0 and
try to identify the elliptic curves.

Suppose that Jac (Da0,b0) is isogeneous over Q to E′a0,b0 × E′′a0,b0 . If p is a
prime of good reduction of Jac (Da0,b0), then E′a0,b0 and E′′a0,b0 also have good
reduction at p. Moreover Jac (Da0,b0,p) is isogeneous over Fp to the product of the
reductions E′a0,b0,p and E′′a0,b0,p. Thus the characteristic polynomial of Frobenius
of Jac (Da0,b0) at p is a product of two quadratic polynomials.

We briefly describe our search. For all pairs of integers a0, b0 such that −1000 ≤
a0, b0 ≤ 1000 and a0b0

(
4a3

0 + 27b20
)
6= 0 and for all primes p such that p < 1000

and Da0,b0 has good reduction at p we compute the characteristic polynomial of
Frobenius at p. If for a pair a0, b0 one of these polynomials is irreducible and
therefore Jac (Da0,b0) is simple over Q, then we ignore this pair. The remaining
pairs are (60,±20), (240,±160) and (540,±540).

Suppose that E′a0,b0 is a factor of Jac (Da0,b0). Since for each of the six remain-
ing pairs a0, b0 the curve Da0,b0 has good reduction at p 6= 2, 3, 5, the Jacobian
variety ofDa0,b0 and the elliptic curve E′a0,b0 also have good reduction at p 6= 2, 3, 5.
By the Shafarevich Theorem (see [61, Theorem IX.6.1]) there are up to isomor-
phism over Q only finitely many elliptic curves with good reduction at p 6= 2, 3, 5.
The conductor of an elliptic curve is an ideal to encode the primes of non-good
reduction, see [62, Section IV.10]. For many conductors the Cremona tables [11]
contain a complete list of isogeny and isomorphism classes of elliptic curves over
Q.
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Table 4.1: All the pairs of integers a0, b0 such that −1000 ≤ a0, b0 ≤ 1000,
a0b0

(
4a3

0 + 27b20
)
6= 0 and Jac (Da0,b0) not necessarily simple over Q. The columns

[E′a0,b0 ] and [E′′a0,b0 ] contain the Cremona labels of the isogeny classes of the el-
liptic curves such that the characteristic polynomials of Frobenius of Jac (Da0,b0)
and E′a0,b0 ×E

′′
a0,b0

at p agree for 5 < p < 1000. The Cremona label of the elliptic

curve Ea0,b0 defined as y2 = x3 + a0x+ b0 is also given.
a0 b0 [E′a0,b0 ] [E′′a0,b0 ] [Ea0,b0 ]

60 20 72a 1800i 1800t
60 -20 144b 3600q 3600n
240 160 576d 14400bv 14400bn
240 -160 576i 14400ei 14400dz
540 540 48a 1200h 1200f
540 -540 24a 600g 600b

We identified possible elliptic factors as follows. Let a0, b0 be one of the six re-
maining pairs. For all the available conductors of the form

(
2a3b5c

)
in the Cremona

tables in Magma and for all the isogeny classes [E] with corresponding conductor
we compute the characteristic polynomials of Frobenius of E and of Da0,b0 at the
primes p such that 5 < p < 1000. If for some prime the former polynomial does
not divide the latter, then E is not an elliptic factor of Jac (Da0,b0) and we ignore
this isogeny class. For each pair we find two isogeny classes. Moreover for all
primes p such that 5 < p < 1000 the characteristic polynomial of Frobenius of
Da0,b0 at p is equal to the product of the characteristic polynomials of Frobenius
of the two elliptic curves at p. The results are given in Table 4.1.

Observe that the elliptic curves Ea0,b0 for the six pairs a0, b0 in Table 4.1 are
quadratic twists of each other. This also holds for the curves Da0,b0 . Since Ea0,b0 ,
E′a0,b0 and E′′a0,b0 fall in different isogeny classes, the elliptic curve Ea0,b0 is not a
factor of Jac (Da0,b0).

Following [31, Section 1], if Jac (Da0,b0) is isogeneous to E′a0,b0×E
′′
a0,b0

, then for
some d > 1 the d-torsion of both elliptic curves are isomorphic as Galois modules.
Therefore if p - d and p is a prime of good reduction, then the traces of Frobenius
on the elliptic curves at p are equal modulo d. Using Magma we see that

gcd
{∣∣E′a0,b0(Fp)

∣∣− ∣∣E′′a0,b0(Fp)
∣∣ : 5 < p < 100

}
= 5

for every entry in Table 4.1. Hence we expect that in these six cases Jac (Da0,b0)
and E′a0,b0 × E

′′
a0,b0

are (5, 5)-isogeneous over Q.

The genus 2 curves whose Jacobian variety admit a (5, 5)-isogeny to a pair of
elliptic curves form a surface in the moduli space of genus 2 curves. Equations of
this surface are available in [36, Section 6]. In principle one could compute the
a0, b0 ∈ Q̄ such that Da0,b0 lies on this surface.
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4.5.1 The case a0 = 60, b0 = 20

We treat this case in a bit more detail for later convenience. Recall that the curve
D60,20 is defined as

y2 =
(
x3 + 60x+ 20

)
(60x+ 20)(60x− 60).

The polynomial x3 +60x+20 is Eisenstein at p = 5, so it is irreducible over Q. Its
discriminant is −243752, which is not a square in Q∗. A short computation shows
that the splitting field is Q

(
ζ3,

3
√

10
)

and has degree 6 over Q. Therefore

Jac (D60,20)(Q)[2] ∼= Z/2Z× Z/2Z.

Recall that we expect that Jac (D60,20) is (5, 5)-isogeneous to E′60,20 × E′′60,20.
Thus the latter should also have 4 rational 2-torsion points.

According to the Cremona tables, the isogeny class with label 1800i contains
precisely one isomorphism class. So E′′60,20 should be isomorphic to the elliptic
curve defined by

y2 = x3 − 52500x− 5537500.

A computation shows that the right-hand side is an irreducible polynomial over
Q and its splitting field is also Q

(
ζ3,

3
√

10
)
. Hence E′′60,20 has no rational points of

order 2.
The curve E′60,20 should therefore have the full 2-torsion subgroup rational.

The isogeny class with label 72a in the Cremona tables contain six isomorphism
classes of which only 72a2 and 72a4 have the full 2-torsion subgroup rational. Thus
we expect that E′60,20 is isomorphic to the elliptic curve either defined as

y2 = x3 − 39x− 70

or defined as
y2 = x3 − 219x+ 1190.
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Chapter 5

Faltings method

In this chapter we describe a method to compare two p-adic representations of a
profinite group. Combined with the Isogeny Theorem this becomes a method to
prove or disprove that two given abelian varieties are isogeneous.

The Faltings method is based on a group that measures the difference in
the characters of two representations. In the proof of [16, Satz 5] Faltings in-
troduces this group to show that up to some conditions there are only finitely
many Galois representations on abelian varieties. In [57] Serre calls this group
the deviation group and briefly explains the concept followed by an effective ap-
plication to special 2-adic Galois representations on an elliptic curve. Livné de-
scribes in [41, Section 4] the method for two-dimensional 2-adic Galois represen-
tations with even trace and isomorphic residue representations. In [10, Chapter 5]
Chênevert explains the deviation group in more detail and extends the method to
two-dimensional 2-adic Galois representations with isomorphic residue representa-
tions. Grenié extends the method to general d-dimensional p-adic representations
in [22]. We recall a version closely related to Chênevert’s and Grenié’s results.

We use the following notations: Let G be a profinite group, K be a local
field with maximal order R and (finite) residue field k of characteristic p, π be
a uniformizer of R and d be a positive integer. Given a closed subgroup H of
G and a positive integer e, denote the closure of the group 〈he : h ∈ H〉 by He.
Notice that if H is a closed normal subgroup of G, then so is He. Suppose that
ρ : G → GLd(R) is a continuous representation, then ρ̄ : G → GLd(k) is the
residue representation of ρ.

Our version of the Faltings method is:

Theorem 5.1. Let ρi : G → GLd(R) for i = 1, 2 be continuous representations
and e be an integer such that d ≤ pe. Suppose that Σ ⊂ G is a subset such that the
characteristic polynomials of ρ1(h) and ρ2(h) agree for all h ∈ Σ. Suppose that
N ⊂ G is an open normal subgroup such that ρ̄i(N) is a p-group. If the set

Σ =
{
ghng−1 : h ∈ Σ, g ∈ G,n ∈ Z

}
maps surjectively to G/Npe , then the characters of ρ1 and ρ2 are equal.
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We explain how to apply the theorem to abelian varieties in Section 5.1 and
prove the theorem in Sections 5.2, 5.3 and 5.4. In Section 5.5 we make some
remarks and compare the theorem with other versions.

5.1 Applications

Suppose that the local field K has characteristic zero and the ρi : G → GLd(K)
are semi-simple. Recall the following well-known result:

Theorem 5.2. If K is a field of characteristic zero and ρi : G → GLd(K) for
i = 1, 2 are semi-simple, then the representations ρ1 and ρ2 are isomorphic if and
only if their characters are equal.

Proof. Follows from the corollary to [6, §20, No. 6, Proposition 6].

Also recall that ρi : G → GLd(K) is isomorphic to some ρ′i : G → GLd(R),
because G is compact [12, Proposition 9.3.5]. Hence ρ1 and ρ2 are isomorphic if
and only if the characters of ρ′1 and ρ′2 are equal. The latter statement can be
checked with Theorem 5.1.

The application to abelian varieties relies on the Isogeny Theorem:

Theorem 5.3 (Faltings). If K is a number field, Ai is an abelian variety over
K of dimension d for i = 1, 2 and ` is a prime, then the natural action of the
absolute Galois group GK on T`Ai ⊗ Q` is semi-simple for i = 1, 2 and there is
an isomorphism

HomK(A1, A2)⊗ Z` −→ HomZ`[GK ](T`A1,T`A2).

Proof. See [16, Satz 3 and 4] and corollaries.

We now give an application to elliptic curves. Consider elliptic curves E1 and
E2 over Q. Let S be the set of primes at which E1 or E2 has bad reduction
and the prime 2. Denote the Galois action on the 2-adic Tate module of Ei by
ρi : GQ → Aut (T2Ei). After a choice of basis we get ρi : GQ → GL2(Z2).
Since the ρi are semi-simple, E1 and E2 are isogeneous over Q if and only if the
characters of ρ1 and ρ2 are equal. If p /∈ S is a prime, then the inertia group at p
is a subgroup of the kernel of both ρi. Therefore

GQ
ρi //

��

GL2(Z2)

Gal (QS/Q)

ρ′i

88

commutes, where QS is the maximal algebraic extension of Q unramified outside
S. The characters of ρ1 and ρ2 are equal if and only if the same is true for ρ′1
and ρ′2. We will apply Theorem 5.1 to ρ′1 and ρ′2. Let G = Gal (QS/Q), d = 2
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and e = 1. Choose N = ker ρ̄1 × ρ̄2. The subgroup N2 corresponds to the field
L defined as the compositum of all quadratic extensions of Q(E1[2], E2[2]) in QS .
By the Čhebotarev Density Theorem every conjugacy class of G/N2 = Gal (L/Q)
contains a Frobenius element of a prime not in S. Denote by Σ the (finite) set of a
Frobenius elements in G for each of these primes. If the characteristic polynomials
of ρ′1(g) and ρ′2(g) are equal for all g ∈ Σ, then Theorem 5.1 implies that the
characters of ρ′1 and ρ′2 are isomorphic, that is E1 and E2 are isogeneous over Q.
On the other hand if the characteristic polynomials are different for some g ∈ Σ,
then tr ρ′1(gn) 6= tr ρ′2(gn) for some n, that is the characters of ρ′1 and ρ′2 differ, so
E1 and E2 are not isogeneous over Q.

5.2 Deviation group

In this section we define the deviation group and prove some of its properties.
Recall that ρi : G → GLd(R) for i = 1, 2 are continuous representations with R
the ring of integers of a local field with uniformizer π.

Consider the group homomorphism ρ = (ρ1, ρ2) : G → GLd(R) × GLd(R).
Let ρ̃ : R[G] → Md(R) ⊕Md(R) be the ring homomorphism obtain by R-linear
extension of ρ. Denote the image of ρ̃ by M . Notice that πM is an ideal in M .
The deviation map δ is defined as follows

R[G]
ρ̃
// //

δ $$ $$

M

����

M/πM

and the subgroup δ(G) of (M/πM)
∗

is called the deviation group.

Proposition 5.4. Let Σ ⊂ G be a subset such that for every conjugacy class C
of δ(G) there exists a g ∈ Σ with δ(g) ∈ C. If the characters of ρ1 and ρ2 are
different, then so are their restrictions to Σ.

The statement of the proposition and its proof below are a reformulation of
those found in [57] and [10, Proposition 5.2.3].

Proof. Suppose that the characters of ρ1 and ρ2 are different, then the set

{n ∈ Z : tr ρ1 ≡ tr ρ2 mod πn}

is finite and has a maximum m. Choose g ∈ G such that tr ρ1(g) 6≡ tr ρ2(g)
mod πm+1. Take h ∈ Σ such that δ(h) = δ

(
aga−1

)
for some a ∈ G, which is

possible by assumption.
Consider the R-module homomorphism ψ : M → R/πm+1 defined as

(A,B) 7−→ trA− trB mod πm+1.
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Notice that πM ⊂ kerψ, because ρ(G) generates M and ψ ◦ ρ(g̃) ∈ πm/πm+1

for all g̃ ∈ G by definition of m. Thus ψ induces an R-module homomorphism
ψ̃ : M/πM → R/πm+1. In particular ψ ◦ ρ = ψ̃ ◦ δ. So

ψ ◦ ρ(h) = ψ̃ ◦ δ(h) = ψ̃ ◦ δ
(
aga−1

)
= ψ ◦ ρ

(
aga−1

)
= ψ ◦ ρ(g) 6= 0.

Hence tr ρ1(h) 6≡ tr ρ2(h) mod πm+1, that is tr ρ1|Σ 6= tr ρ2|Σ.

Observe that the residue representation ρ̄ : G → GLd(k) × GLd(k) factors
through δ(G), but in general the deviation group is not isomorphic to ρ̄(G). For
example there exist non-isogeneous elliptic curves E1 and E2 over Q with all two-
torsion rational, so for the associated 2-adic Galois representations ρ̄(GQ) is trivial
but δ(GQ) is not.

We can also define the deviation group as the inverse limit of some finite discrete
topological groups. For positive integers n consider the continuous homomorphism
ρ(n) : G → GLd(R/π

n) × GLd(R/π
n) induced by ρ. Repeat the deviation group

construction for ρ(n) to obtain a continuous homomorphism δ(n) : G → δ(n)(G)
and a discrete topological group δ(n)(G). Since R is complete, δ(G) = lim←− δ(n)(G).
Notice that δ(1) = ρ̄. Hence δ(G) is a profinite group and the homomorphisms in
the following commutative diagram are continuous:

G
δ // //

ρ̄

��

δ(G)

��

GLd(k)×GLd(k).

In fact the deviation group is a finite discrete topological group by

Proposition 5.5. The order of δ(G) is less than |k|2d
2

.

The proof is identical to [10, Proposition 5.2.2].

Proof. Consider M as an R-submodule of the free R-module Md(R) ⊕Md(R) of
rank 2d2. Since R is a principal ideal domain, as R-module M is free and has rank
at most 2d2. Thus M/πM as a k-vector space has dimension at most 2d2. Hence

|δ(G)| ≤
∣∣(M/πM)

∗∣∣ < |M/πM | ≤ |k|2d
2

.

By combining the previous two propositions we see that it is sufficient to com-
pare the traces tr ρ1(g) and tr ρ2(g) for finitely many g ∈ G to decide if the
characters of ρ1 and ρ2 are equal or not. The problem is to find the finitely many
elements g.



5.3. RESIDUE KERNEL 53

5.3 Residue kernel

How to compute the deviation group δ(G) for two representations ρi : G→ GLd(R)
is unclear. In particular directly computing a set Σ ⊂ G as in Proposition 5.4 is
therefore not feasible. The solution is to approximate the deviation group by
another group such that the homomorphism δ factors through this group.

In the case d = 2 and R the maximal order in a finite extension of Q2 the
method described in [41, Section 4] and [10, Sections 5.4 and 5.5] uses that up to
certain conditions on the residue representations ρ̄i the deviation group δ(G) has
exponent two. These conditions on ρ̄1 and ρ̄2 are closely related to the images of
the residue representations being trivial.

Suppose for a moment that N = ker ρ̄ = ker ρ̄1 ∩ker ρ̄2. Consider the following
exact sequence

1 −→ δ(N) −→ δ(G) −→ ρ̄(G) −→ 1.

In principle ρ̄(G) is well-known. To get a better understanding of δ(G) we should
therefore study δ(N). The latter group is a pro-p group, because ρ(N) is a pro-p
group. Moreover δ(N) has the following crucial property:

Proposition 5.6. Let e ∈ Z be such that d ≤ pe and N ⊂ G a subgroup such that
ρ̄(N) is a p-group. If n ∈ N and the characteristic polynomials of ρi(n) agree,
then the order of δ(n) divides pe.

This proposition is a generalization of [10, Proposition 5.4.2].

Proof. Denote the characteristic polynomial of ρi(n) by χi ∈ R[x]. Using the
ring homomorphism Md(R) → Md(k), it follows that χi mod π is equal to the
characteristic polynomial χ̄i of ρ̄i(n).

We claim that χ̄i = (x− 1)
d
: Let l be the splitting field of χ̄i over k. The field

l is also finite and of characteristic p. Now ρ̄i(n) has a Jordan normal form over l,
that is it is conjugate to a matrix with blocks of the form

. . .

λ 1
λ

. . .


with λ ∈ l∗. The order of λ in l∗ is a power of p, because the order of ρ̄i(n) is a
power of p. The order of λ also divides the order of l∗, which is not divisible by p.
Hence λ = 1 and the claim follows.

Assume that χ1 = χ2, then χi = (x− 1)
d − πF for some F ∈ R[x]. The

Cayley-Hamilton Theorem gives χi(ρi(n)) = 0, that is

(ρi(n)− 1)
d

= πF (ρi(n)),

which implies that (ρ(n)− 1)
d

= πF (ρ(n)) ∈ πM . Thus δ(n)
pe

= 1, because π
divides p and by the definition of e.
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In general the order of δ(n) divides pe
′

with e′ ∈ Z such that 2d ≤ pe
′
. The

proof is the same as above except for the final step where χi is replaced by χ1χ2.

5.4 Proof of the theorem

We need the following proposition in the proof of Theorem 5.1.

Proposition 5.7. Let p be a prime number and e be a positive integer. Suppose
that G is a finite p-group and write N = Gp

e

. If for every gN ∈ G/N there exists
a h ∈ G[pe] such gN = hN , then G has exponent dividing pe.

This is a generalization of [10, Lemma 5.4.7] and equivalent to [22, Lemma 7].

Proof. Suppose that G does not have exponent dividing pe, then N is a non-trivial
normal subgroup.

The group N has a subgroup M of index p which is normal in G: Let Np be the
Frattini quotient of N . Remark that Np is a non-trivial Fp-vector space, because
N is a non-trivial p-group. A normal subgroup of N of index p corresponds to a
(normal) subgroup of Np of index p, which again corresponds to a non-zero element
from the vector space dual of Np. If the set of normal subgroups of N of index
p is denoted by Ω, then |Ω| = pn − 1 for some n ∈ Z>0. Let the group G act on
the set Ω by conjugation. This action has a fixed point, otherwise the order of the
orbits are divisible by p in contradiction with the order of Ω being coprime to p.
Choose M to be a fixed point of this action.

The subgroup N/M is contained in the center of G/M : Consider the action
of G/M by conjugation on N/M . Since G/M is a p-group and Aut (N/M) ∼=
Aut (Z/pZ) is a group of p − 1 elements, the action must be trivial. Hence gM ·
nM · (gM)

−1
= nM , that is gM · nM = nM · gM for all nM ∈ N/M and

gM ∈ G/M .

A diagram chase in the following commutative diagram will result into a con-
tradiction, thereby proving the proposition.

1 // N //

��

G //

��

G/N //

��

1

1 // N/M // G/M // G/N // 1

Let gM ∈ G/M . By assumption there exists a h ∈ G[pe] such that gN = hN .
Thus gM = hM · nM for some n ∈ N . Using that N/M ⊂ Z(G/M) and N/M ∼=
Z/pZ, shows that gM has order dividing pe. Thus G/M has exponent dividing
pe. However this implies that N = Gp

e ⊂M , contradicting [N : M ] = p.

The proof below is a generalization of the proof of [10, Theorem 5.4.8].
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Proof of Theorem 5.1. Recall that N is an open normal subgroup of G and δ is a
continuous homomorphism. Since δ(G) is a discrete topological group, so is δ(N).
Hence the kernel of

G −→ δ(N) −→ δ(N)/δ(N)
pe
.

is closed and therefore contains Npe .
Recall the set

Σ =
{
ghng−1 : h ∈ Σ, g ∈ G,n ∈ Z

}
.

For every h ∈ Σ the characteristic polynomials of ρ1(h) and ρ2(h) are equal.
Using the fundamental theorem of symmetric polynomials and the fact that the
characteristic polynomial only depends on the conjugacy class it follows that for
every g ∈ Σ the characteristic polynomials of ρ1(g) and ρ2(g) are equal.

The kernel of δ contains Npe : Consider the commutative diagram

N
δ // //

����

δ(N)

����

N/Npe // // δ(N)/δ(N)
pe
.

Take any x ∈ δ(N)/δ(N)
pe

. Let x̃ ∈ N be a lift of x. Since N/Npe ⊂ G/Npe , by
assumption there exists a g ∈ Σ such that gNpe = x̃Npe . In fact g ∈ N as x̃ ∈ N
and Npe ⊂ N . Now δ(g) ∈ δ(N)[pe] by Proposition 5.6, because the characteristic
polynomials of ρi(g) are equal. The pro-p group δ(N) is finite by Proposition 5.5.

Therefore the group δ(N)
pe

is trivial by Proposition 5.7. Hence Npe is a subgroup
of ker δ.

Assume that the characters of ρi are different. Consider

G
δ // //

����

δ(G)

G/Npe
δ̃

;; ;;

Take any conjugacy class C ⊂ δ(G). Choose a g ∈ G such that δ(g) ∈ C. By
assumption there is a h ∈ Σ such that gNpe = hNpe . So δ(g) = δ(h). Thus by
Proposition 5.4 the restriction of the characters of ρi to Σ are different. However
this contradicts the construction of Σ.

Hence the characters of ρ1 and ρ2 are equal.

5.5 Remarks

In the proof of Theorem 5.1 we approximated the deviation group δ(G) by G/Npe .
Although the group δ(G) is finite, it is not obvious whether in general the same is
true for the approximation.
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Proposition 5.8. Let G be a profinite group, N ⊂ G be an open subgroup, p be
a prime and e ≥ 1. The group G/Npe is finite if and only if the pro-p quotient of
N is finitely generated.

Proof. Since

1 −→ N/Npe −→ G/Npe −→ G/N −→ 1

is exact and G/N finite by N being open, the group G/Npe is finite if and only if
N/Npe is finite. Denote the pro-p quotient of N by Np. Then N/Npe ∼= Np/N

pe

p .

Moreover the Frattini quotients of Np and Np/N
pe

p are equal.

The Frattini quotient of Np is finite if and only if Np is finitely generated by
[13, Proposition 1.14]. Hence if N/Npe is finite, then Np is finitely generated.

Assume that Np is finitely generated, then the same is true for Np/N
pe

p . Let d

be the number of generators. Observe that Np/N
pe

p is an inverse limit of groups
of exponent dividing pe with at most d generators. The solution to the Restricted
Burnside Problem [79, 80] implies that the order of a finite group of exponent pe

and d generators is bounded in terms of pe and d. Hence Np/N
pe

p is finite.

More on the Restricted Burnside Problem can be found in [71].

We first compare the approximation of the deviation group in Theorem 5.1
with the approximation in the proof of [16, Satz 5]. In group theory terms the
latter is given by G/M , where M is the intersection of all open subgroups of G of

index at most |δ(G)| < |k|2d
2

. To obtain the best of both versions, the group Npe

in Theorem 5.1 should be replaced by the intersection M ′ of all subgroups H of

G such that Npe ⊂ H ⊂ N and [G : H] ≤ |δ(G)| < |k|2d
2

.

Now we compare Theorem 5.1 with Grenié’s version. If G is a pro-p group,
then Theorem 5.1 is essentially identical to [22, Proposition 9]. The main result
[22, Theorem 3] is a corollary to [22, Proposition 9] obtained by:

1. Given a restriction on the eigenvalues of ρ̄i(g) and on the dimension d of the
ρi, the representations ρi can be modified such that their images are pro-p
groups.

2. Assume that ρ(G) is a pro-p group. Since ρ factors through the pro-p quotient
of G, we may assume that G is a pro-p group. Let r be the rank of ρ(G)
as defined in [13]. By the theory of powerful pro-p groups there exists an

n depending on r, p and e such that Φn(ρ(G)) ⊂ ρ(G)
pe

with Φ(H) the
Frattini subgroup of H. We have ρ(Φn(G)) = Φn(ρ(G)). In this case the
deviation group is approximated by G/Φn(G). Moreover

Φn(G) ⊂ Φn−1(G) ⊂ · · · ⊂ G

is a sequence of open subgroups such that Φi(G)/Φi+1(G) is abelian of ex-
ponent p.
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The second step can also improve Theorem 5.1. Apply the theory of powerful

pro-p groups to ρ(N) in order to obtain a n such that Φn(ρ(N)) ⊂ ρ(N)
pe

. Since
Φn
(
N/Npe

)
is contained in the kernel of

N/Npe −→ δ(N)/δ(N)
pe
.

the deviation group is also approximated by
(
G/Npe

)
/Φn

(
N/Npe

)
. We expect

that Φn
(
N/Npe

)
is non-trivial especially when the minimal number of generators

of N/Npe is large compared to the rank r of ρ(N).
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Chapter 6

Galois extensions with
exponent four group

The content of this chapter resulted from the desire to use the Faltings method
described in Chapter 5 to decide whether or not two given abelian varieties are
isogeneous over a given field. The motivating question: Is the Jacobian variety of
the hyperelliptic curve

C : y2 =
(
x3 + 60x+ 20

)
(60x+ 20)(60x− 60)

isogeneous over Q to the product of the two elliptic curves

E1 : y2 = x3 − 39x− 70

and
E2 : y2 = x3 − 52500x− 5537500.

Since these abelian varieties have good reduction at the primes different from 2, 3
and 5, the Galois representations on the 2-adic Tate modules are unramified above
the other primes. If we are able to compute the maximal exponent four extension
of

Q(Jac (C)[2], E1[2], E2[2]) = Q
(
ζ3,

3
√

10
)

unramified outside 2, 3 and 5 and the characteristic polynomial of Frobenius for
sufficiently many primes, then we can decide if the two abelian varieties are isoge-
neous over Q using Theorem 5.1.

We describe the Galois group of the maximal p-extension for certain cases in
Section 6.1 and from it derive the Galois group of the maximal exponent four
subfield in Section 6.2. In Sections 6.3, 6.4 and 6.5 this subfield is computed
explicitly for Q and ramification only above {2, 3,∞}. We compute the conjugacy
class of Frobenius automorphisms of this field in Section 6.6 and describe the
consequences for the Faltings method in Section 6.7. An idea to compute other
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exponent four extensions is briefly discussed in Section 6.8. The last Section 6.9
lists some open questions.

Many computations in this chapter are implicitly performed using Magma.
Especially the combinatorial parts appear to be impossible without the help of a
computer.

6.1 Maximal p-extensions

Let K be a number field and L/K be a Galois extension with exponent four Galois
group unramified outside a set of places S. This is an example of a 2-extension of
K. In fact L is a subfield of the maximal 2-extension K̂S of K unramified outside
S, that is the union of all finite 2-extensions of K unramified outside S.

The Galois group ĜS of the extension K̂S/K is a pro-2 group. It can be
analysed using presentations of pro-2 groups and Galois cohomology. Moreover in
special cases ĜS is described exactly. See [34, 48, 58] for an introduction to Galois
cohomology and see [77] for profinite groups.

We first consider the case K = Q and S = {2, 3,∞}. The Galois group ĜS is
described in [34, Example 11.18] as the pro-2 presentation〈

s3, t3, t∞ : t23
[
t−1
3 , s−1

3

]
, t2∞

〉
,

where s3 is a lift of the Frobenius automorphism at 3, t3 is a generator of the inertia
group at 3 and t∞ is the complex conjugation. In the related case S = {2,∞}
the Galois group is described in [43] (as mentioned in [5] and [33]) as the pro-2
presentation 〈

s3, t∞ : t2∞
〉
.

Suppose that K = Q
(

3
√

10
)

and S the set of prime ideals above 2 and 3 and
the unique embedding in R. The maximal order OK is a principal ideal domain
and its unit group has rank one. The generators of the unit group are −1, u with

u =
1

3

(
−2

3
√

10
2

+
3
√

10 + 7
)
.

The prime ideals above 2 and 3 satisfy (2) = p3
2 and (3) = p3ap

2
3b where p2, p3a, p3b

are generated by

p2 =
1

3

(
3
√

10
2

+
3
√

10 + 4
)

p3a =
1

3

(
− 3
√

10
2

+ 2
3
√

10− 1
)

p3b =
1

3

(
− 3
√

10
2
− 3
√

10− 1
)

respectively. Thus S = {p2, p3a, p3b,∞R}. According to [78] the pro-2 presentation
of ĜS is given by〈

sp3a , tp3a , sp3b , tp3b , t∞ : t2p3a
[
t−1
p3a , s

−1
p3a

]
, t2p3b

[
t−1
p3b
, s−1
p3b

]
, t2∞

〉
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provided that the following group is trivial:

V Sp2
=
{
a ∈ K∗ : a ∈ K2

p2
, a ∈ UqK

∗
q

2 ∀q /∈ S
}
/K∗2.

This is indeed true, because

V Sp2
=
{
a = −1i1ui2pi33ap

i4
3b : a ∈ K2

p2
, ij ∈ {0, 1}

}
/K∗2

and a is a square in OK/p7
2 only for i1 = i2 = i3 = i4 = 0. The pro-2 presentation

of ĜS in the related case S = {p2,∞R} is easily derived to be〈
sp3a , sp3b , t∞ : t2∞

〉
.

Unfortunately in the case K = Q and S = {2, 3, 5,∞} a complete description is
unavailable as V S2 is non-trivial: −15 is a square in Q2. Hence for certain unknown
relations r1, . . . , rn the Galois group has a pro-2 presentation〈

s3, t3, s5, t5 : t23
[
t−1
3 , s−1

3

]
, t45
[
t−1
5 , s−1

5

]
, r1, . . . , rn

〉
.

Note that all maximal p-extensions above are infinite, because for K = Q and
S = {2,∞} the extension is already infinite by for example the Golod-Shafarevich
Theorem or the infinite abelian quotient of ĜS .

6.2 Exponent four quotients

Given a number field K, a set of places S and the Galois group ĜS of the maximal
2-extension of K unramified outside S we can describe the Galois group GS,4 of the
maximal exponent four extension KS,4 of K unramified outside S as the maximal

exponent four quotient of ĜS .
The exponent four quotient GS,4 of ĜS is computed using the p-quotient al-

gorithm implemented in Magma. We list the order of GS,4 and its 2-class in
Table 6.1 for the cases considered in the previous section. Based on the order of
GS,4 for K = Q

(
3
√

10
)

computing the corresponding extension appears to be in-
feasible. Note that the groups GS,4 are much smaller than the maximal exponent
four groups with equal number of generators as shown in Table 6.2.

A naive way to compute the maximal exponent four extension KS,4 is to build
it as a tower of (abelian) exponent two extensions with the number of steps roughly
related to the 2-class. In the case Q and S = {2, 3,∞} this gives

Q 8 // Q(ζ24)
128 // L

32 // QS,4.

Since L is totally imaginary and [L : Q] = 1024, the maximal exponent two exten-
sion M of L has degree [M : L] > 2512 (due to the 512 generators of OL∗). This
suggests it is too difficult to compute QS,4 from M .
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Table 6.1: The orders of the Galois group GS,4 of the maximal exponent four
extension of the number field K unramified outside the set of primes S.

K S |GS,4| 2-class conjugacy classes
Q 2,∞ 26 4 13
Q 2, 3,∞ 215 5 272

Q
(

3
√

10
)

p2,∞ 237 7 1 832 960

Q
(

3
√

10
)

p2, p3a, p3b,∞ 2234 7
Q 2, 3, 5,∞ ≤ 273 ≤ 5

Table 6.2: The orders and 2-class of the Burnside groups on n generators of expo-
nent four. Cases n = 1, 2, 3, 4 are mentioned in [42] and case n = 5 is mentioned
in [71, Chapter 6].

n |B(n, 4)| 2-class
1 22 2
2 212 5
3 269 7
4 2422 10
5 22728 13

6.3 Transitive groups

Instead of directly computing the field KS,4 we can also try to identify subfields
by studying the Galois group GS,4 and consulting tables of number fields. An
important concept is transitive groups.

Recall that a transitive group is a group G and a set X with a faithful and
transitive action of G on X. If the set X and the action of G are clear from the
context, then simply write G for the transitive group. The degree of the transitive
group is defined to be the order of X. An isomorphism class of transitive groups
is labelled dTn with d the degree and n a positive integer following Magma [4].

Consider the table of number fields described in [29]. An entry in the table
consists of an irreducible polynomial f , an isomorphism class [G] of a transitive
group G and some other data. The polynomial f defines the number field up to
isomorphism as K = Q[x]/(f) and G is the Galois group of the normal closure of
K together with its action on the roots of f .

A transitive group is a special case of a coset action, that is the action of a
group G on the coset space G/H for some subgroup H. Notice that in the case
above H is the subgroup fixing the field K. A coset action (G,H) is a transitive
group if and only if the normal core of H in G is trivial, that is⋂

g∈G
g−1Hg = {e}.
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Table 6.3: These irreducible polynomials define up to isomorphism all number
fields of degree 8 and unramified outside {2,∞} with the Galois group acting on
the roots as the transitive group 8T30. Obtained from [29].

x8 + 4x6 + 4x4 − 2
x8 − 4x6 + 4x4 − 2

x8 + 4x6 + 6x4 + 4x2 − 1
x8 − 4x6 + 6x4 − 4x2 − 1

Conjugate subgroups give isomorphic coset actions.
Consider the case Q and S = {2,∞} from the previous section. The group GS,4

contains up to conjugacy 4 subgroups with trivial normal core in G and lowest
possible index 8. In each of the four cases the corresponding transitive group
has label 8T30. According to [29] there are precisely four number fields up to
isomorphism with this particular transitive group and ramification only above S,
see Table 6.3. The splitting fields of the four polynomials are pairwise isomorphic,
and are also isomorphic to the number field defined by the degree 64 polynomial
in [22, Section 4.2].

The case Q and S = {2, 3,∞} needs a different approach: The lowest possible
index of a subgroup of GS,4 with trivial normal core is 128 and at the time of
writing [29] contains no fields of degree 128 unramified outside S.

6.4 Composita

Recall that a compositum of subfields of KS,4 corresponds to the intersection of
the corresponding subgroups of GS,4. Thus the Galois group GS,4 also gives us in-
formation on the composita of subfields such as if KS,4 is equal to the compositum
of small extensions of K.

A subfield L of KS,4 is called special if L is not contained in a compositum
of Galois extension of K in KS,4 of lower degree, that is the subgroup H of GS,4
corresponding to L is called special if H does not contain an intersection of normal
subgroups of GS,4 of lower index. Notice that a subgroup is special if and only if
its normal core in GS,4 is special.

We restrict ourself to the case K = Q and S = {2, 3,∞}. The lattice N of
normal subgroups in GS,4 provides us with insight into the special normal sub-
groups and their composita. A computation with Magma shows GS,4 contains 382
normal subgroups.

Denote the subset of N of special normal subgroups by NS . It contains 69
subgroups of which 23 are minimal. A minimal subgroup in NS has index 64,
512 or 2048. The normal closure of 〈t3〉 in GS,4 is special (and minimal), that is
Q{2,∞},4 is a special subfield of QS,4.

Suppose A ⊂ NS is a set of special normal subgroups such that
⋂
N∈AN is

trivial, then A contains at least 3 subgroups of which one must have index 2048
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(and be minimal). There are 216 such subsets A with 3 subgroups. If one of the
three special subgroups is 〈t3〉, then there are 24 triples with trivial intersection.

More information can be obtained from N and NS such as inclusions of special
subfields and common subfields.

6.5 Determine QS,4 for S = {2, 3,∞}
In this section we determine QS,4 (for S = {2, 3,∞}) as the splitting field of a
polynomial over Q of degree 8 + 16 + 16. The main ingredients are the previous
two sections and taking into account the maximal (abelian) exponent 2 subfield
QS,2 of QS,4.

If N1, N2 ∈ NS is a pair such that 〈t3〉 ∩N1 ∩N2 is trivial, then the minimal
transitive degree of GS,4/Ni is equal to 16 or 32. There are 12 such pairs with the
minimal transitive degree of the quotient equal to 16 for both i = 1, 2. Denote the
set of the 8 Ni’s appearing in such a pair by NS,1. For 6 of them the index in GS,4
is equal to 512 and for 2 of them it is equal to 2048. The pairs are precisely the
12 combinations of one of both indices.

Denote the set of all conjugacy classes of subgroups of GS,4 of index dividing
16 by H. For each [H] ∈ H compute the coset action GS,4 → S[GS,4:H]. Denote its
kernel by N[H] (the normal core of H in GS,4) and its image as a transitive group
by T[H].

As a bonus one can deduce that QS,4 is not equal to the Galois closure of a
compositum of extensions of Q of degree dividing 8 and one field of degree dividing
16, namely the intersection N of N[H] over all H ∈ H of index dividing 8 is non-
trivial and N ∩ N[H] is also non-trivial for all [H] of index equal to 16. However

〈t3〉 ∩N1 ∩N2 is trivial for some Ni ∈ NS,1 (as above). Hence QS,4 is the splitting
field of a polynomial over Q of degree 8 + 16 + 16 = 40 and this is the lowest
possible degree.

Consider for each N ∈ NS,1 the [H] ∈ H such that N = N[H]. The N ’s can be
divided into three cases according to the transitive groups T[H]:

1. T[H] is isomorphic (as transitive groups) to 16T824, 16T867, 16T915 or
16T926. There are four such N ’s with [GS,4 : N ] = 512.

2. T[H] is isomorphic to 16T956, 16T960, 16T985 or 16T996. Two such N ’s
with [GS,4 : N ] = 512.

3. T[H] is isomorphic to 16T1468. Two such N ’s with [GS,4 : N ] = 2048.

Notice that N[H] ∈ NS,1 for all [H] ∈ H such that T[H] of the type given in the first
and third cases. However this is false for the second case. Denote the subset of
NS,1 corresponding to the first and last cases by NS,2. Hence we can identify the
fields corresponding to the subgroups in NS,2 as the Galois closure of the degree
16 extensions of Q with the listed transitive Galois groups.

In order to avoid computing all degree 16 extensions K of Q unramified outside
S we derive restrictions on K ∩QS,2 and the intermediate fields.
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Denote the maximal (abelian) exponent two quotient of GS,4 by GS,2 and
let π : GS,4 → GS,2 be the canonical homomorphism. For [H] ∈ H such that
N[H] ∈ NS,2 the index of π(H) is equal to 2 if T[H] is isomorphic to 16T824 or
16T867 and it is index is equal to 4 otherwise.

Recall that s̄3 = π(s3), t̄3 = π(t3) and t̄∞ = π(t∞) form a basis of GS,2. If
[H] ∈ H such that T[H] is isomorphic to 16T915 or 16T926, then π(H) = 〈s̄3t̄3t̄∞〉
or π(H) = 〈s̄3t̄∞〉, that is π(H) corresponds to Q

(
i,
√

6
)

or Q(ζ12). If [H] ∈ H such
that T[H] is isomorphic to 16T1468, then π(H) = 〈t̄∞〉, that is π(H) corresponds

to Q
(√

2,
√

3
)
.

Let [H] ∈ H such that T[H] is isomorphic to 16T915 or 16T926. A subgroup
H ′ ⊂ GS,4 of index 8 such that H ⊂ H ′ ⊂ π−1π(H) has TH′ isomorphic to 8T9.
Similarly for T[H] isomorphic to 16T1468 the corresponding TH′ is isomorphic to
8T31.

In the first subsection we recall how to compute exponent two extensions. This
is used in the second subsection to determine up to isomorphism all subfields of
QS,4 with Galois group over Q equal to 16T915, 16T926 or 16T1468.

6.5.1 Exponent two extensions

Let K be a number field, OK the maximal order of K and S a finite set of primes
of OK containing the primes above 2. Denote the group of principal ideals in OK
by P and the group of invertible ideals by I. We briefly recall how to compute the
maximal Galois extension of K unramified outside S having exponent two Galois
group. Recall that a group of exponent two is abelian. This subsection is roughly
based on [10, Section 5.6].

According to Kummer theory the exponent two extensions of K correspond to
the subgroups of K∗/K∗2. Consider the following commutative diagram

1 // OK∗ //

��

K∗ //

��

P //

��

1

1 // OK∗ // K∗ // P // 1,

where the rows are the usual exact sequences and the vertial maps correspond to
x 7→ x2. Apply the Snake Lemma and use the unique factorization into prime
ideals to obtain the exact sequence

1 −→ OK∗/OK∗2 −→ K∗/K∗2 −→ P/P2 −→ 1.

Consider another commutative diagram

1 // P //

��

I //

��

Cl (OK) //

��

1

1 // P // I // Cl (OK) // 1,
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where again the vertical maps correspond to x 7→ x2. This gives the exact sequence

1 −→ Cl (OK)[2] −→ P/P2 −→ I/I2 −→ Cl (OK)/Cl (OK)
2 −→ 1.

Together the two exact sequences describe all exponent two extensions of K. In
particular such an extension is unramified outside S if and only if the image of the
corresponding subgroup of K∗/K∗2 in I/I2 is contained in the subgroup generated
by the primes in S.

We can now compute the maximal exponent two extension of K unramified
outside S (with S finite) as follows: Compute a basis p1I2, . . . , pmI2 of the inter-
section of the kernel of

I/I2 −→ Cl (OK)/Cl (OK)
2

with the subgroup
〈
pI2 : p ∈ S

〉
. Compute a basis q1P, . . . , qm̃P of Cl (OK)[2].

Compute generators pi and qj of pi and q2
j respectively. Compute generators

ζ, u1, . . . , un of the unit group OK∗. The desired extension is given by

K
(√

ζ,
√
u1, . . . ,

√
un,
√
p1, . . . ,

√
pm,
√
q1, . . . ,

√
qm̃

)
.

6.5.2 The number fields

In this subsection we describe how to compute the number fields QHS,4 discussed
earlier up to isomorphism.

Consider a number field K/Q with Galois group 16T915 or 16T926. In this
case we have

Q −→ L −→M −→ K

with L = Q
(
i,
√

6
)

or L = Q(ζ12), and the Galois group of M equal to 8T9.
Such M are listed in Table 6.4. For all fields M in this table and for all quadratic
extensions K ′ of M unramified outside S compute the Galois group of K ′/Q. This
gives 23 and 26 number fields with Galois group 16T915 and 16T926 respectively.
Since some of them are isomorphic, we consider them up to isomorphism and find
8 isomorphism classes of number fields for both groups. The number of classes
agrees with the number of conjugacy classes in H inducing a transitive group
isomorphic to 16T915 and 16T926 respectively. The defining polynomials are
given in Tables 6.5 and 6.6.

Next consider a number field K/Q with Galois group 16T1468. In this case we
have

Q −→ Q
(√

2,
√

3
)
−→M −→ K

with the Galois group of M/Q isomorphic to 8T31. The possible M are given
in Table 6.7. Following the same procedure as before we find up to isomorphism
64 number fields K with Galois group 16T1468, which agrees with the number
of conjugacy classes in H associated with this transitive group. The defining
polynomials of the number fields K are listed in Table 6.8.

Hence QS,4 is the splitting field of the product of a polynomial from Table 6.3
with a polynomial from either Table 6.5 or 6.6 with a polynomial from Table 6.8.
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Table 6.4: Of the 28 number fields M/Q with Galois group 8T9 unramified outside
S = {2, 3,∞} (up to isomorphism) listed in [29], only the following three and three
fields contain Q(ζ12) and Q

(
i,
√

6
)

respectively.

x8 − 2x6 + 2x4 − 4x2 + 4
x8 − 6x6 + 14x4 − 12x2 + 4
x8 − 6x6 + 6x4 + 36x2 + 36

x8 − 4x7 + 16x6 − 32x5 + 54x4 − 64x3 + 52x2 − 32x+ 10
x8 − 8x6 + 24x4 − 32x2 + 25

x8 + 30x4 + 9

Table 6.5: Up to isomorphism all the number fields K unramified outside S =
{2, 3,∞} with Galois group equal to 16T915:

x16 − 6x12 + 72x10 + 198x8 − 216x6 + 1404x4 − 1296x2 + 324
x16 + 4x14 + 12x12 + 20x10 + 32x8 + 44x6 + 36x4 + 28x2 + 25
x16 − 4x14 + 4x12 − 8x10 + 48x8 − 88x6 + 88x4 − 32x2 + 4

x16 − 12x14 + 60x12 − 180x10 + 432x8 − 972x6 + 2052x4 − 2916x2 + 2025
x16 − 12x14 + 84x12 − 396x10 + 1296x8 − 2916x6 + 4428x4 − 4212x2 + 2025

x16 − 4x14 + 12x12 − 32x10 + 80x8 − 104x6 + 72x4 − 16x2 + 4
x16 + 12x14 + 60x12 + 144x10 + 144x8 + 216x6 + 1512x4 + 1296x2 + 324

x16 − 4x14 + 4x12 + 4x10 − 4x6 − 20x4 + 4x2 + 25

6.6 Frobenius elements

Given a finite Galois extension K of Q, we know by the Čhebotarev Density The-
orem that every conjugacy class of Gal (K/Q) contains at least one automorphism
obtained by lifting the Frobenius automorphism of the residue field corresponding
to a prime in OK .

In this section we compute such a prime for every conjugacy class in the Galois
group G = GS,4 of the maximal exponent four extension K = QS,4 of Q unramified
outside 2, 3 and∞. As K is the compositum of three fields, we choose the following
polynomials

f1 = x8 + 4x6 + 4x4 − 2,

f2 = x16 − 4x14 + 4x12 + 4x10 − 4x6 − 20x4 + 4x2 + 25,

f3 = x16 − 20x12 + 84x8 + 96x6 − 128x4 − 96x2 − 8.

from Tables 6.3, 6.5 and 6.8 respectively. Denote the splitting field of fi by Ki.
Let Gi be the Galois group of Ki/Q.

Our first attempt to compute the Frobenius elements of K was as follows. For
many primes compute the conjugacy class of Frobenius elements in Gi. This way
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Table 6.6: Up to isomorphism all the number fields K unramified outside S =
{2, 3,∞} with Galois group equal to 16T926:

x16 + 8x14 + 28x12 + 56x10 + 90x8 + 136x6 + 148x4 + 88x2 + 25
x16 − 12x14 + 60x12 − 216x10 + 504x8 − 216x6 + 216x4 + 324
x16 + 8x14 + 10x12 − 40x10 − 54x8 + 40x6 + 76x4 + 16x2 + 4

x16 + 4x12 − 16x10 + 26x8 − 32x6 + 12x4 + 16x2 + 25
x16 − 12x14 + 66x12 − 216x10 + 450x8 − 216x6 + 756x4 + 324

x16 − 24x12 − 72x10 + 126x8 + 1296x6 + 3672x4 + 4536x2 + 2025
x16 + 24x14 + 204x12 + 648x10 + 72x8 − 2592x6 + 2808x4 − 1296x2 + 324

x16 + 8x14 + 34x12 + 80x10 + 114x8 + 88x6 + 52x4 + 16x2 + 4

Table 6.7: Of the 16 number fields M/Q with Galois group 8T31 unramified
outside S = {2, 3,∞} (up to isomorphism) listed in [29], only the following 8 fields
contain Q

(√
2,
√

3
)
.

x8 − 10x4 − 12x2 − 2
x8 − 10x4 + 12x2 − 2

x8 − 4x6 + 2x4 + 4x2 − 2
x8 + 4x6 + 2x4 − 4x2 − 2

x8 − 12x6 + 42x4 − 36x2 − 18
x8 + 12x6 + 42x4 + 36x2 − 18

x8 − 18x4 − 36x2 − 18
x8 − 18x4 + 36x2 − 18

one obtains a triple of conjugacy classes at every prime. Unfortunately this fails to
give as many triples as G has conjugacy classes, because some distinct conjugacy
classes in G give identical triples of conjugacy classes in the Gi’s.

Instead we use the method for computing Frobenius elements as described
in [15]. Let f = f1f2f3 and

f = (x− α1) · · · (x− αn)

with αi ∈ K. Consider G as a subgroup of Sn by the action on the αi. Every
element from a given conjugacy class of G has the same cycle type, but an element
from a different conjugacy class of G can have the same cycle type as well. In [15]
for every conjugacy class C of G the following polynomials are introduced

ΓC =
∏
σ∈C

(
x−

deg f∑
i=1

h(αi)σ(αi)

)

where h ∈ Z[x] is a fixed polynomial of deg h < deg f such that the ΓC ’s are
coprime in Q[X] for different conjugacy classes C of G. Notice that ΓC ∈ Z[x] and
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Table 6.8: Up to isomorphism half of the number fields K unramified outside
S = {2, 3,∞} with Galois group equal to 16T1468 are listed below. Substitute ix
for x to obtain the other half.

x16 − 16x14 + 60x12 + 32x10 − 284x8 − 576x6 − 576x4 − 288x2 − 72
x16 − 16x14 + 92x12 − 208x10 + 106x8 + 184x6 − 268x4 + 592x2 − 1058

x16 − 20x12 + 42x8 − 264x6 + 340x4 − 528x2 − 2
x16 − 20x12 + 84x8 − 96x6 − 128x4 + 96x2 − 8

x16 − 24x14 + 220x12 − 1056x10 + 2874x8 − 4200x6 + 2380x4 + 672x2 − 1058
x16 − 28x12 − 240x10 − 686x8 − 888x6 − 540x4 − 144x2 − 18
x16 − 32x12 − 120x10 + 246x8 + 648x6 − 236x4 − 48x2 − 2
x16 − 40x12 − 120x10 − 2x8 + 312x6 + 180x4 − 144x2 − 18

x16 − 44x12 − 96x10 − 54x8 + 72x6 + 52x4 − 2
x16 − 4x12 + 4x8 − 96x6 − 288x4 − 288x2 − 72

x16 − 52x12 − 48x10 + 226x8 − 120x6 + 324x4 − 288x2 − 18
x16 − 56x12 − 168x10 + 6x8 + 216x6 + 52x4 − 2

x16 − 8x14 − 12x12 + 160x10 − 68x8 + 192x6 − 1872x4 − 864x2 − 72
x16 − 8x14 + 12x12 + 16x10 − 68x8 − 288x6 − 432x4 − 288x2 − 72
x16 − 8x14 − 12x12 + 256x10 − 686x8 + 360x6 + 396x4 − 288x2 − 18
x16 − 8x14 − 16x12 + 152x10 + 142x8 − 600x6 − 996x4 − 432x2 − 18

x16 − 8x14 − 16x12 + 88x10 + 118x8 − 88x6 − 4x4 + 32x2 − 2
x16 − 8x14 + 20x12 + 16x10 − 134x8 + 104x6 + 44x4 − 16x2 − 2
x16 − 8x14 + 20x12 − 16x10 − 302x8 + 456x6 + 1356x4 − 18
x16 − 8x14 + 20x12 − 16x10 + 34x8 − 120x6 + 60x4 − 18

x16 − 8x14 + 28x12 − 80x10 + 172x8 + 352x6 − 3152x4 + 6496x2 − 4232
x16 − 8x14 + 32x12 − 232x10 + 622x8 + 552x6 − 996x4 − 432x2 − 18
x16 − 8x14 + 32x12 − 40x10 − 50x8 + 360x6 − 372x4 + 144x2 − 18
x16 − 8x14 + 32x12 − 8x10 − 218x8 + 104x6 + 236x4 + 800x2 − 1250
x16 − 8x14 + 44x12 − 64x10 − 14x8 + 168x6 + 12x4 − 144x2 − 18
x16 − 8x14 − 4x12 + 32x10 − 110x8 + 360x6 + 924x4 − 720x2 − 18
x16 − 8x14 − 4x12 + 64x10 + 106x8 + 8x6 − 100x4 − 64x2 − 2

x16 − 8x14 − 52x12 − 176x10 − 500x8 − 1024x6 − 1264x4 − 736x2 − 8
x16 − 8x14 + 80x12 − 296x10 + 118x8 + 1256x6 − 244x4 − 2080x2 − 1058

x16 − 8x14 + 8x12 + 40x10 − 122x8 + 104x6 − 4x4 − 16x2 − 2
x16 − 8x14 − 8x12 − 8x10 + 262x8 − 440x6 + 268x4 − 272x2 − 2

x16 − 8x14 + 8x12 + 8x10 − 2x8 − 24x6 + 12x4 − 18
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ΓC is independent of the ordering of the αi. In particular

σ ∈ C ⇐⇒ ΓC

(
deg f∑
i=1

h(αi)σ(αi)

)
= 0.

To determine the conjugacy class of a Frobenius element at the prime p, it is
sufficient to compute the roots of f in Kp/Qp and use the equivalence above.

6.6.1 Computing the polynomials ΓC

Suppose that we know the group G and its action on the αi with the αi as elements
of C. Given a polynomial h, to which precision do we need to compute the αi in
order to correctly compute the ΓC ’s?

Consider αi as an element in C. If n = |C| and ΓC =
∑n
i=0 cix

i, then

|ci| ≤
(
n

i

)
Mn−i
C ,

where

MC = max
σ∈C

∣∣∣∣∣
deg f∑
i=1

h(αi)σ(αi)

∣∣∣∣∣ ≤ deg f ·max
i
|h(αi)| ·max

i
|αi|.

This gives an upper bound on max |ci| depending only on f , h, i and n.

6.6.2 Searching for a polynomial h

The choices h = x and h = x2 (as suggested in [15]) in our case both give ΓC ’s
with the resultant of some pairs equal to zero. The choice h = x3− 3x does work.
Below we explain how to obtained our h.

We need to find a polynomial h such that the resultant of every pair of ΓC is
nonzero. Moreover we would like the coefficients of the ΓC ’s to be small.

Again take the αi as elements in C. Let h =
∑deg (f)−1
i=0 aix

i. We consider
h as an element

(
a0, . . . , adeg (f)−1

)
from the lattice Zdeg f with quadratic form

Q = M†M , where the natural choice for M would be the matrix with rows(
σ(αi), αiσ(αi), . . . , α

deg (f)−1
i σ(αi)

)
for every i = 1, . . . ,deg f and every σ ∈ G. Unfortunately, at the time of writing
Magma is unable to compute the Galois group of (reducible) f with αi ∈ C.
Instead we use the (sub)matrix M with rows for i = 1, 2, 3(

σ(β), βσ(β), . . . , βdeg (f)−1σ(β)
)

where β runs over the roots of fi and σ ∈ Gi. Starting from the shortest h we
consider h of increasing length until we find a h whose ΓC have pairwise non-zero
resultants modulo a prime less than 100. This way we find

h = x3 − 3x.
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6.6.3 Computing the Frobenius elements

Given a prime p ≥ 5 we now describe how to determine the conjugacy class of a
Frobenius element σ at p. We need to determine the cycle type of σ, compute the
sum

∑deg f
i=1 h(αi)σ(αi) and evaluate the ΓC in this sum for all conjugacy classes

C with the same cycle type as σ.
The cycle type of σ can be read off from the factorization of f over Qp, that is

every irreducible factor corresponds to a cycle of length equal to its degree. Denote
the set of irreducible factors by F .

As Kp is an unramified extension of Qp of degree dividing 4, the polynomial f
will certainly split completely over the unramified extension Lp of Qp of degree 4.

Every αi is the root of a unique g ∈ F . Using that σ(αi) is also a root of g
and σ(αi) = αpi mod p, we compute σ(αi) with the Hensel Lemma. This gives

the sum
∑deg f
i=1 h(αi)σ(αi) as an element of Lp.

This procedure works for every prime from 5 to 2999999 inclusive except for
p = 7. For unclear reasons Magma fails to compute the Hensel lift at p = 7 for
two irreducible polynomials in F of degree 2. However computing σ(αi) is trivial
for irreducible polynomials of degree 2.

6.6.4 The primes

Table 6.9 contains for every conjugacy class C of G the smallest prime p such
that the Frobenius element at p is contained in C. If one is only interested in
the primes such that every conjugacy class of G contains a power of a Frobenius
element, then the primes in Table 6.10 can be omitted.

6.7 Consequences for the Faltings method

By combining the just computed list of primes with the Faltings method described
in the previous chapter, we can easily derive two results concerning certain two-
dimensional abelian varieties over Q.

Theorem 6.1. Let A1 and A2 be abelian varieties of dimension two defined over
Q. If A1 and A2 have good reduction at every prime p 6= 2, 3, the degree of
Q(A1[2], A2[2])/Q is a power of two and for every prime p in Table 6.9 the char-
acteristic polynomials of Frobenius for A1 and A2 are equal, then A1 and A2 are
isogeneous over Q.

Proof. Denote the absolute Galois group of Q by GQ. Let ρi : GQ → GL4(Z2) be
the Galois representation on the Tate modules T2Ai ∼= Z2

4. Denote the residue
representation by ρ̄i. Since the residue representation ρ̄i factors as

GQ −→ Gal (Q(A1[2], A2[2])/Q) −→ GL4(F2)

and the degree of Q(A1[2], A2[2])/Q is a power of two, the image of ρ̄i is a 2-group.
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Table 6.9: Every conjugacy class of Gal (K/Q) contains a Frobenius element at
precisely one of the primes below. These primes are also the smallest possible.

5 167 563 1607 3529 7607 15887 65521
7 173 577 1609 3673 7873 16417 66841

11 179 593 1619 3719 7919 16631 69457
13 181 599 1657 3767 8161 18289 71233
17 191 601 1753 3769 8231 18433 71329
19 193 653 1777 3793 8641 18457 74353
23 199 659 1801 3889 8689 18481 101281
29 211 673 1823 3911 8737 18503 103969
31 229 719 1871 3947 9311 18793 118369
37 233 739 1873 4057 9601 19441 139921
41 239 743 1993 4127 9697 21001 149377
43 241 769 2017 4273 9721 21601 155569
47 257 839 2063 4297 9817 22441 161377
53 263 863 2087 4391 10007 22679 166417
59 269 881 2113 4441 10369 25969 168601
61 271 887 2137 4463 11447 26881 170353
67 283 937 2281 4561 11617 27529 186481
71 293 983 2351 4583 11689 29017 197233
73 311 1009 2377 4729 12049 29879 230977
79 313 1031 2393 4801 12241 30937 231169
83 331 1033 2521 4919 12409 33073 253681
89 337 1129 2593 5209 12743 34849 264289
97 347 1151 2617 5233 12841 34919 457153

103 359 1153 2663 5449 13249 36097 515041
107 373 1163 2687 5569 13417 37057 519553
109 379 1201 2689 5639 13633 38711 597697
113 409 1223 2713 5641 13921 39841 710641
127 431 1249 2833 5879 14087 40177 830497
131 433 1319 2999 6047 14449 42577 836833
139 449 1321 3119 6121 14737 48817 862417
149 457 1439 3167 6337 14929 49681 926977
151 479 1481 3313 6983 15121 54217 1484737
157 499 1487 3433 7393 15313 55681 1501009
163 521 1583 3499 7559 15649 57697 2977153

Table 6.10: The conjugacy class in Gal (K/Q) of a Frobenius element at a prime
below contains the power of a Frobenius element at a smaller prime.

3673 29017 155569 515041 862417
5209 30937 161377 597697 1501009

10369 101281 231169 830497 2977153
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Let Σ be the set of Frobenius elements at the primes in Table 6.9 and N = GQ.
The characters of the representations ρi are equal by Theorem 5.1. Since the ρi are
semi-simple by [16, Satz 3], they are isomorphic by [6, §20, No. 6, Proposition 6].
From Corollary 1 to [16, Satz 4] follows that A1 and A2 are isogeneous over Q.

The theorem above can be strengthend a bit by excluding the primes in Ta-
ble 6.10, because the Frobenius elements at these primes are conjugate to a power
of a Frobenius element at the remaining primes in Table 6.9.

Theorem 6.2. The number of isogeny classes of two-dimensional abelian varieties
A over Q with good reduction at every prime p 6= 2, 3 and the degree of Q(A[2])/Q
a power of two is at most 2.2 · 101783.

Proof. Let A be a two-dimensional abelian variety over Q and p a prime of good
reduction. The characteristic polynomial of Frobenius at p is an example of a Weil
polynomial, that is of the form

x4 − a1x
3 +

(
a2

1 − a2

)
x2 − a1px+ p2

with a1, a2 integers such that |a1| ≤ 4
√
p and |a2| ≤ 4p. So there are at most(

8
√
p+ 1

)
(8p+ 1) such polynomials.

The upper bound on the number of isogeny classes follows by computing∏
p

(8
√
p+ 1)(8p+ 1)

where p ranges over the primes in Table 6.9 excluding those in Table 6.10.

6.7.1 The case S = {2,∞}
In the case of Q and S = {2,∞} a stronger version of Theorem 6.1 is essentially
described in [22]. Since the degree of QS,4/Q is lower than in the case of {2, 3,∞},
less primes need to be checked. More importantly the image of GQ → GL4(F2) is
in fact a 2-group, because of the non-existence of number fields unramified outside
S of degree d ≤ 15 not a power of 2, see [28] and its references. This results in:

Theorem 6.3 (Grenié [22]). Let A1 and A2 be abelian varieties of dimension two
defined over Q. If A1 and A2 have good reduction at every prime p 6= 2 and for
every prime p in

{5, 7, 11, 17, 23, 31}

the characteristic polynomials of Frobenius for A1 and A2 are equal, then A1 and
A2 are isogeneous over Q.

Also Theorem 6.2 can be strengthend in this case:

Theorem 6.4. The number of isogeny classes of two-dimensional abelian varieties
A over Q with good reduction at every prime p 6= 2 is at most 9.3 · 1020.
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6.8 Other exponent 4 extensions

Let K be a number field and S a finite set of places of K including the primes above
2 and the real infinite places. Suppose that A1 and A2 are two-dimensional abelian
varieties defined over K with good reduction at the finite primes not in S. Denote
the Galois representation on the Tate module of Ai by ρi : GK → Aut (T2Ai).

In order to use the Faltings method to compare the Galois representations
we could compute the maximal exponent four extension of L = K(A1[2], A2[2])
unramified outside S. Then the deviation map δ factors as

GK −→ Gal (LS,4/K) −→ δ(GK).

However, based on Section 6.2 we expect the degree of LS,4/K to be much bigger
than the order of the deviation group δ(GK). Recall from the previous chapter
that the order of the latter group is less than 232.

Instead of computing LS,4 consider the field M such that GM is the kernel of
ρ1 × ρ2. Denote the maximal exponent four extension of L in M by LM . The
deviation map δ factors as

GK −→ Gal (LM/K) −→ δ(GK).

Define Mi = K(Ai[2
∞]). Notice that GMi

= ker ρi and M = M1 ·M2. Observe
that M is a subfield of the maximal 2-extension of L unramified outside S. On
the other hand the field Mi and therefore also M contains K(ζ2∞).

We can study LM using the arithmetic of Ai, namely: What is Ai(LM )[2∞]?
By adjoining the points in this group to L we obtain a subfield of LM .

6.8.1 Elliptic curve example

Let K = Q. Recall

E1 : y2 = x3 − 39x− 70 = (x− 7)(x+ 2)(x+ 5)

with ∆(E1) = 2838 and j(E1) = 24133

32 . It has good reduction at p ≥ 5 and
potential multiplicative reduction at p = 3. Now we will study E1(LM )[2∞].

First we show that E1(LM )[2∞] contains E1[8]. The induced map

ρ̃ : Gal (Q(E1[8])/Q) −→ GL2(Z/8Z)

is injective. Since the two-torsion points of E1 are rational, ρ̃(σ) = 1 + 2Aσ with

Aσ ∈ M2(Z/8Z). So Gal (Q(E1[8])/Q) has exponent 4, because (1 + 2Aσ)
4

= 1.
Hence Q(E1[8]) ⊂ LM and the claim follows.

Let p ≥ 5. Since LM/K is of exponent 4 and unramified at p, the degree of
the residue field of OLM at p over Fp divides 4. As E1 has good reduction p we
obtain an injective homomorphism

E1(LM )[2∞] −→ Ē1

(
Fp4
)
[2∞].
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Thus |E1(LM )[2∞]| divides
∣∣Ē1

(
Fp4
)∣∣. The latter is easily derived from

∣∣Ē1(Fp)
∣∣

and Ē1(Fqn) = qn + 1− an with a2 = a2
1 − 2q.

Suppose that p = 5, then Ē1 : y2 = x3 +x and Ē1(F5) = 4. Now Ē1(F25) = 32
and Ē1(F625) = 640 = 128 · 5. Therefore |E1(LM )[2∞]| divides 128. Similar
if p = 7, then

∣∣Ē1(F74)
∣∣ = 256 · 9. Hence E1(LM )[2∞] is isomorphic to either

Z/8Z× Z/8Z or Z/16Z× Z/8Z.
Alternatively we can use the potential multiplicative reduction of E1 at p = 3.

The elliptic curve E1 is isomorphic over Q
(√

3
)

to

E′1 : y′
2

= (x′ + 1)x′(x′ − 3)

with the isomorphism given by x′ = x+2
3 and y′ = y

3
√

3
. The latter curve has split

multiplicative reduction at 3, because the tangent lines at the node (0, 0) of Ē′1 are
defined over F3. Thus E′1 is isomorphic over Q3 to the Tate curve Eq with q ∈ Q3

such that

j(Eq) =
1

q
+ 744 + . . . .

In fact q = u · 32 with u ∈ Z∗3 and u ≡ 13 mod 81. Moreover Eq
(
Q̄3

) ∼= Q̄∗3/qZ as
Galois modules. Observe that the x-coordinate of a point on E1 of order 4 satisfies

0 = 2(x− 1)(x+ 11)
(
x2 − 14x− 59

)(
x2 + 4x+ 31

)
and that the discriminant of the degree 2 terms are 2433 and −2233 respectively.
So
√

3 ∈ LM . Hence

E1(LM ) ∼= E′1(LM ) −→ E′1(Q3,4) ∼= Q∗3,4/qZ,

where Q3,4 = Q3

(
ζ16,

4
√

3
)

is the maximal exponent four extension of Q3. Since

E′1[2∞] is rational over the maximal 2-extension Q̂3 of Q3, we can deduce the

subgroup Q∗3,4/qZ[2∞] from the Galois action on Q̂∗3/qZ[2∞]. Recall that〈
s, t : t2

[
t−1, s−1

]〉
is a pro-2 presentation of Gal

(
Q̂3/Q

)
and the subgroup

〈
s4, t4

〉
corresponds to

Q3,4. Suppose that n = 2k, then Q̂∗3/qZ[n] =
〈
ζn · qZ, n

√
q · qZ

〉
where q = v n

√
3

2

with vn = u. Hensel’s lemma implies that v ∈ Q3, because u ≡ 1 mod 3. With
respect to the basis

{
ζn · qZ, n

√
q · qZ

}
[ρ(s)] =

(
3 0
0 1

)
and [ρ(t)] =

(
1 2
0 1

)
.

The vector (a, b)
T

is fixed by
[
ρ
(
s4
)]

and
[
ρ
(
t4
)]

if and only if 16a ≡ 0 mod n
and 8b ≡ 0 mod n. Hence

Q∗3,4/qZ[2∞] =
〈
ζ16 · qZ, 8

√
q · qZ

〉 ∼= Z/16Z× Z/8Z.
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Using the good reduction at p = 5 or the potential multiplicative reduction
at p = 3 we now know that E1(LM )[2∞] is isomorphic to either Z/8Z × Z/8Z
or Z/16Z × Z/8Z. With Magma we show that E1(LM )[2∞] has a point of order
16: Let ψ8 and ψ16 be the 8- and 16-division polynomials of E1. Factor ψ16

ψ8
over

Q(E1[8]) as f1 · · · f24 with fi irreducible of degree 4. Let k be the residue field of
OQ(E1[8]) at a prime above 5, then k ∼= F54 . If E1(LM ) contains a point of order
16, then its x-coordinate is a zero of fj for some j and fj factors into linear terms
over k as LM has exponent 4. Precisely 8 of the fi’s factor completely over k, say
f1, . . . , f8. Let N be an extension of Q(E1[8]) obtained by adding a root x16 of f1.
Using Magma one verifies that over N the equation y2 = x3

16− 39x16− 70 has two
roots, that is E1(N) has a point1 of order 16. Let g1 be the minimal polynomial
over Q of a primitive element of Q(E1[8]) and g2 be the minimal polynomial of x16

over Q. Now N is the splitting field of g1g2. Compute the Galois group of g1g2 and
verify that the exponent of Gal (N/Q) is indeed 4. Hence N ⊂ LM and E1(LM )
contains a point of order 16. The computation also shows that [Q(E1[8]) : Q] = 16
and [N : Q] = 64.

Remark 6.5. This subsection is related to determining the image of the Galois
representation on the 2-adic Tate module of E1. According to [52] (obtained
via [11]) the image is generated by(

1 0
0 7

)
,

(
1 0
4 5

)
,

(
3 6
4 7

)
∈ GL2(Z2).

Using Magma we find that the exponent four quotient of the image has order 128.
Therefore the subfield N of LM computed above is a proper subfield.

6.9 Open questions

We determined the field QS,4 for S = {2, 3,∞} by carefully selecting subgroups
of GS,4 and searching for the fields corresponding to these subgroups. Here we
used the images of s3, t3 and t∞ in the abelian exponent two quotient of GS,4 and
Kummer theory to limit the search for the number fields. This raises the following
question: Is it possible to further limit the search by using that s3 is a Frobenius
element above 3 and similar for t3 and t∞?

As mentioned in the introduction, this chapter is motivated by applying the
Faltings method to Jac (C) of a genus two curve C and E1 × E2. Since the two-
torsion points of E2 are not rational, it appears infeasible to compute the maximal
exponent four extension of Q(Jac (C)[2], E1[2], E2[2]). We ask: Is it feasible to
compute the maximal exponent four subfield of

Q(Jac (C)[2∞], E1[2∞], E2[2∞])?

1Notice that E1(N) has in fact 64 points of order 16 (by adding a point of order 8), so fi
splits completely over N for i = 1, . . . , 8.
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A (partial) description of the Galois group of the maximal 2-extension is also
available for global function fields. A natural question therefore is: Can one com-
pute the maximal exponent four extension of a global function field?
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Chapter 7

Van Wamelen method

In this chapter we compute morphisms from a genus two curve to an elliptic curve
using the complex uniformization of the associated Jacobian varieties. The method
is essentially the same as the one described in [72, 73], where it is used to compute
endomorphisms of a Jacobian variety and morphisms between genus two curves,
respectively. The p-adic analog of this method is introduced in [30] without explicit
computation of morphisms.

We describe the complex uniformization method in Section 7.1 and give an
application in Section 7.2.

7.1 Theory

We describe the method from [72] in the context of determining a morphism be-
tween curves.

Let K be a number field. Consider two curves Ci defined over K with rational
points Oi ∈ Ci(K) for i = 1, 2 and a morphism φ : C1 → C2 defined over a finite
extension L of K sending O1 to O2. Denote the Jacobian variety of Ci by Jac (Ci).
By [46, Section 6],

C1
//

φ

��

Jac (C1)

φ∗

��

C2
// Jac (C2)

is a commutative diagram of varieties over K. Associate to each of the algebraic
varieties and morphisms their analytic versions. Recall that the underlying set
of Can

i is equal to Ci(C) and that φ : C1 → C2 is completely determined by the
induced map C1(C)→ C2(C). So φ is actually determined by φan.

The analytic Jacobian variety Jac (Ci)
an

has a simple description in terms of
the dual of the C-vector space Ω1

Can
i

of regular one forms and the first homology
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group H1 (Can
i ,Z). Write Λi for the image of the homomorphism

H1 (Can
i ,Z) −→ Ω1

Can
i

∗

γ 7−→
(
ω 7→

∫
γ

ω

)
.

The analytic Jacobian variety Jac (Ci)
an

is isomorphic to Ω1
Can
i

∗
/Λi and the mor-

phism Ci → Jac (Ci) becomes the morphism

Can
i −→ Ω1

Can
i

∗
/Λi

P 7−→

(
ω 7→

∫ P

Oi

ω

)
+ Λi.

The morphism φan
∗ : Jac (C1)

an → Jac (C2)
an

is induced by the dual of the linear
map φan∗ : Ω1

Can
2
→ Ω1

Can
1

.
We can determine φan

∗ by solving a linear system as follows. Choose a set of
generators αi = {γi1, . . . , γi2gi} of H1 (Can

i ,Z) and a basis βi = {ωi1, . . . , ωigi}
of Ω1

Ci/K
with gi the genus of Ci. Since βi is a basis of Ω1

Can
i

too, this induces

an isomorphism Ω1
Can
i

∗ → Cgi . The lattice Λi considered as a subgroup of Cgi is
generated by the period matrix

[Λi] =


∫
γi1
ωi1 . . .

∫
γi2gi

ωi1
...

...∫
γi1
ωigi . . .

∫
γi2gi

ωigi

 ∈ Mgi×2gi(C).

Since φan∗ is the C-linear extension of φ∗ : Ω1
C2/L

→ Ω1
C1/L

, with respect to the

bases βi we have [φan∗] ∈ Mg1×g2(L). The dual map φan∗∗ induces a map between
the analytic Jacobians if and only if φan∗∗(Λ1) ⊂ Λ2, that is

[φan∗]
T

[Λ1] = [Λ2]B

with B ∈ M2g2×2g1(Z). Notice that by scaling this system by some integer and
choosing a basis of OL the problem reduces to computing integer solutions of a
linear system.

We can reconstruct φ : C1 → C2 from φ∗
an as follows. Consider Ci as a curve in

A2 with coordinates xi, yi. The rational map φ is defined by two rational functions
in x1, y1 with coefficients in OL. Take the coefficients as variables. If φ is regular
at P ∈ C1(C), then evaluating φ at P gives linear equations. To compute φ(P )
use the following commutative diagram

C1(C) //

φ

��

Jac (C1)(C)

φ∗

��

Ω1
Can

1

∗
/Λ1

∼=oo

φan∗∗

��

C2(C) // Jac (C2)(C) Ω1
Can

2

∗
/Λ2

∼=oo
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Given sufficiently many distinct points, the coefficients can be obtained by solving
the linear system of equations.

7.2 Application

Consider the hyperelliptic curve C defined by

y2 =
(
x3 + 60x+ 20

)
(60x+ 20)(60x− 60),

the elliptic curve E1 defined by

y2
1 = x3

1 − 39x1 − 70

and the elliptic curve E2 defined by

y2
2 = x3

2 − 52500x2 − 5537500.

As mentioned in Section 4.5, we expect Jac (C) and E1 × E2 to be isogeneous.
Using the method described in the previous section, we will compute morphisms
φi : C → Ei defined over Q for i = 1, 2 using Magma.

We first compute the homomorphisms Jac (C)
an → Ean

i for i = 1, 2 by the
following steps.

1. Compute the period matrices PC and PE of C and E

PC =

(
p11 p12 p13 p14

p21 p22 p23 p24

)
and PE =

(
q11 q12

)
2. Rewrite the linear system ATPC = PEB as Mv = 0 with

M =


p11 p21 −q11 0 0 0 −q12 0 0 0
p12 p22 0 −q11 0 0 0 −q12 0 0
p13 p23 0 0 −q11 0 0 0 −q12 0
p14 p24 0 0 0 −q11 0 0 0 −q12


and

v =
(
a11 a21 b11 b12 . . . b24

)T
3. Find integer solutions using the LLL method as suggested by [72]. The

lattice is the one with the standard basis of R10 as generators and with the
quadratic form given by the matrix

I +
1

ε

(
M†M +

(
M†M

)T)
where ε is the precision.
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We find for E1 and E2 respectively that

A1 =

(
200
100

)
· n1, B1 =

(
−3 0 0 1
−3 −2 −1 0

)
· n1

and

A2 =

(
−20
20

)
· n2, B2 =

(
2 0 0 1
−1 −3 1 −2

)
· n2

for n1, n2 ∈ Z.
Recall from Section 4.5 that we expected Jac (C) and E1 × E2 are (5, 5)-

isogeneous. This is supported by the above computation as the degree of the
isogeny is equal to the index of the lattice of C in the lattice of E1 ×E2, and this
index is equal to the absolute value of

det

(
B1

B2

)
= −25n2

1n
2
2.

We continue by computing the xi-coordinate of the morphism C → Ei and
assume that the morphism is compatible with the hyperelliptic involution. In this
case xi is a function of x only.

1. Suppose that the xi is a rational function in x of degree at most 5 defined
over Q, that is

xi =
c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x+ c0

d5x5 + d4x4 + d3x3 + d2x2 + d1x+ d0

with ci, di ∈ Z.

2. Choose 12 points from C(C) with distinct x-coordinates and compute the
image on Ei(C) by chasing the diagram

C(C) // Ω1
Can

∗
/ΛC

ĀT

��

Ei(C) // Ω1
Ean
i

∗
/ΛEi

3. Find integer solutions to the resulting linear system as above.

Following these steps we obtain

x1 =
9x5 − 50x4 + 740x3 + 60x2 − 160x− 32

25x4 − 100x3 + 60x2 + 80x+ 16

and

x2 =
27x5 − 60x4 + 3850x3 + 17700x2 + 11475x+ 2000

3x4 − 8x3 + 6x2 − 1
.
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We still need to compute the yi as a function of x, y. Instead of using the same
method as above, we solve the defining equation for Ei in the function field Q(C).
As a bonus this proves the computation is correct. Since the mentioned equation
has two solutions, we choose the one that is compatible with the matrix Ai. The
functions are

y1 =
9

20

x5 − 8x4 − 48x3 − 64x2 − 16x

125x6 − 750x5 + 1200x4 + 200x3 − 960x2 − 480x− 64
y

and

y2 =
27

20

3x6 − 10x5 − 415x4 − 4780x3 − 6875x2 − 3050x− 425

9x7 − 39x6 + 61x5 − 35x4 − 5x3 + 11x2 − x− 1
y.

Hence we obtain explicit morphisms φi : C → Ei defined over Q for i = 1, 2 that
together induce a (5, 5)-isogeny Jac (C)→ E1×E2. This confirms the expectation
from Section 4.5.
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Conclusion

We conclude this thesis by briefly discussing the results and a number of open
questions for each of the chapters.

In Chapter 1 we studied elliptic curves E over Fq such that E is maximal
over a finite extension of Fq. The discussion is separated in two cases, namely E is
supersingular and E is ordinary. In the former case we extended the work of [14] to
provide a complete picture. Our main contribution is to the latter case of ordinary
elliptic curves. Lower bounds on linear forms in logarithms proved to be the key
ingredients to explicitly limit the degree of the field extensions over which E may
be maximal. However this limit is not strict as is shown by ineffective methods.
Indeed computer experiments suggest that the degree of such extensions is at most
5 for q > 5. We believe different techniques are necessary to improve the effective
and ineffective upper bounds on the degree of the field extension. A result from
sieve theory allowed us to prove an observation made in [65] on elliptic curves over
Fp maximal over a cubic extension. It is unknown to us if a similar proof also
works in the quintic case.

In Chapter 2 we constructed from a pair of elliptic curves with complex mul-
tiplication a genus 2 curves over Q or over quadratic number fields, and gave a
precise description of when their reduction modulo a prime above p is maximal
over Fp2 . This showed that the technique used in [35] for genus g = 3 can also be
applied in the case g = 2. For some pairs of complex multiplication our method
does not work over Q. It is unknown to us if this is due to our construction of the
genus 2 curve or that such curves simply do not exist over Q. We considered only
4 out of the 13 possible endomorphism rings of elliptic curves over Q with complex
multiplication. This leaves the question open whether or not our construction also
works for the remaining endomorphism rings.

In Chapter 3 we constructed a family of elliptic curves of which every elliptic
curve has the same Galois representation on their 3-torsion subgroup. Although
such families are not new, we used the Hesse pencil to obtain an elementary proof
of its universal property. It complements earlier proofs in [53] using the theory of
modular curves and in [17] using invariant theory.

In Chapter 4 we studied the Jacobian variety of the Mestre curve Ca,b for

various a, b. We found that Jac (Ca,b) is isogeneous to E2
a,b×Jac (Da,b)

2
with Ea,b

an elliptic curve and Da,b a genus 2 curve. Since Jac (Da,b) is in general simple,
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it is not possible to improve the lower bound on the rank of the elliptic curves in
the family from [67, Theorem 3]. A computer experiment suggested that for some
values of a, b the Jac (Da,b) is isogeneous to a product of elliptic curves, but Ea,b
is not one of those factors. It is unknown to us if there are any a, b such that Ea,b
is a factor of Jac (Da,b).

In Chapter 5 we extended the explicit version of the Faltings method described
in [10] for the special case of 2-dimensional 2-adic representations to arbitrary finite
dimensional p-adic representations of a profinite group. This is closely related
to [22], although our version puts more emphasis on the residue representations.

In Chapter 6 we analysed maximal Galois extensions of number fields unram-
ified outside a given finite set of places with Galois group of exponent 4. We
succeeded in computing such an extension of Q unramified outside 2, 3 and ∞
as the splitting field of a degree 40 polynomial over Q, and adapted the method
in [15] to compute a Frobenius element for every conjugacy class in the Galois
group. In general these extensions are currently too large to compute explicitly.
Therefore it is impossible to apply our explicit version of the Faltings method to
the Jacobian variety of the curve Da,b with a = 60 and b = 20 from Chapter 4.
Possibly an improved explicit version can be obtained by studying subfields of
Q(A1[2∞], A2[2∞]) for given abelian surfaces A1 and A2 over Q. Another open
question is how many of the primes in Table 6.9 are necessary for Theorem 6.1 to
be true. A partial answer would follow from an extension of [64] to genus 2 curves
over Q with good reduction outside 2 and 3 such that the field of definition of the
Weierstrass points of the curve has degree a power of 2.

In Chapter 7 we applied complex uniformation as in [72, 73] in the slightly
different context of a morphism from a genus 2 curve to an elliptic curve. We
explicitly computed a morphism from the curve Da,b with a = 60 and b = 20
from Chapter 4 to each of the elliptic factors of its Jacobian variety. It would be
interesting to see if the same could be achieved with 3-adic uniformization, because
both elliptic curves have potential multiplicative reduction at 3.



Samenvatting

De Nederlandse titel van het voorliggende proefschrift luidt:

De arithmetiek van maximale krommen,
het Hessepenceel en de Mestrekromme

Dit proefschrift is het resultaat van het bestuderen van vragen binnen drie
onderwerpen uit de arithmetische meetkunde. Hieronder geven wij per onderwerp
een beknopte wetenschappelijke beschrijving van de vragen en de resultaten, en
noemen wij kort enkele nieuwe problemen die uit dit werk voortkomen.

Maximale krommen

Het eerste onderwerp gaat over krommen over eindige lichamen met veel rationale
punten op de kromme. Het aantal rationale punten op een kromme C van geslacht
g over een eindig lichaam Fq met q elementen voldoet aan de bekende Hasse-Weil-
Serre-grens

q + 1− gb2√qc ≤ |C(Fq)| ≤ q + 1 + gb2√qc.

We noemen de kromme C maximaal over Fq indien de bovengrens wordt bereikt.
In hoofdstuk 1 beschouwen wij elliptische krommen E over Fq en stellen wij

de vraag: Bestaat er een eindige uitbreiding van Fq waarover E maximaal is? Het
antwoord is afhankelijk van het supersingulier dan wel gewoon zijn van E. Schrijf

a1 = q + 1− |E(Fq)|.

Als E supersingulier is, oftewel ggd (a1, q) 6= 1, dan bestaan er in het geval
a1 6= −

√
q, 2
√
q oneindig veel uitbreidingen van Fq waarover E maximaal is, maar

in het geval a1 = −√q, 2√q komen deze uitbreidingen in zijn geheel niet voor. Het
antwoord voor gewone E is minder volledig. Met behulp van de theorie van lineaire
vormen in logaritmen verkrijgen wij een expliciete bovengrens op de graad van de
uitbreiding waarover E maximaal is. Vervolgens verbeteren wij met ineffectieve
methoden de bovengrens tot 11 voor voldoende grote q. Een computerberekening
laat voor priemmachten q < 106 zien dat enkel de graden 3 (zie tabel 1.2 voor
q < 103), 5 (zie tabel 1.3), 7 (bij q = 5 en a1 = 1) en 13 (bij q = 2 en a1 = 1)
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daadwerkelijk voorkomen; de graden 3 en 5 lijken oneindig vaak voor te komen.
Een resultaat uit de zeeftheorie bevestigt het bestaan van oneindig veel priemge-
tallen p met een elliptische kromme over Fp die maximaal is over Fp3 . Het is bij
ons onbekend of eenzelfde resultaat mogelijk is voor graad 5.

In hoofdstuk 2 maken wij geslacht-2-krommen C over Q en over kwadratische
getallenlichamen doormiddel van een vezelproduct van twee elliptische krommen
E1 en E2 elk met complexe vermenigvuldiging. Hierbij kiezen wij krommen Ei
met endomorfismenring Z[ζ3], Z[i], Z

[
1
2 + 1

2

√
−7
]

of Z
[√
−2
]
. Voor alle mogelijke

paren van deze ringen vinden wij een kromme C die in 7 gevallen is gedefinieerd
over Q en in de resterende 3 gevallen is gedefinieerd over een kwadratisch getallen-
lichaam. Vanwege de complexe vermenigvuldiging van E1 en E2 hebben wij een
nauwkeurige beschrijving (via een congruentierelatie) van de priemen p waarvoor
de reductie Ei,p van Ei bij p supersingulier is. In het bijzonder weten wij de priem-
getallen p, waarvan de reducties E1,p en E2,p bij priemen p boven p maximaal zijn
over Fp2 . Per constructie is de Jacobivariëteit Jac (C) van C isogeen met E1×E2.
Dus weten wij hetzelfde voor de reducties van C. De bovengenoemde endomor-
fismenringen zijn slechts 4 van de 13 mogelijkheden in het geval van elliptische
krommen over Q met complexe vermenigvuldiging. Er resteert de vraag of onze
constructie ook werkt voor de overige ringen.

Het Hessepenceel

Het tweede onderwerp betreft een familie van elliptische krommen over een perfect
lichaam k van karakteristiek ongelijk aan 2 en 3, waarbij de Galoisvoorstelling
op de 3-torsieondergroep hetzelfde is voor alle elliptische krommen in de familie.
De constructie van de familie van krommen gaat als volgt: Zij E een elliptische
kromme over k met vergelijking F = 0 en F ∈ k[X,Y, Z] een homogeen kubisch
polynoom. Schrijf

Hess (F ) = det

 ∂2F
∂X2

∂2F
∂X∂Y

∂2F
∂X∂Z

∂2F
∂X∂Y

∂2F
∂Y 2

∂2F
∂Y ∂Z

∂2F
∂X∂Z

∂2F
∂Y ∂Z

∂2F
∂Z2

 .

Het Hessepenceel van E is de kromme E over k(t) met vergelijking

tF + Hess (F ) = 0.

Wij vatten k(t) op als het functielichaam van P1. Daardoor kunnen wij spreken
van een vezel Et0 van E boven t0 ∈ P1(k). Merk op dat E∞ = E.

Zij ook E′ een elliptische kromme over k. Een isomorfisme φ : E[3]→ E′[3] van
de voorstellingen ρ : Gk → Aut (E[3]) en ρ′ : Gk → Aut (E′[3]) heet symplectisch
als φ compatibel is met de Weilparingen op de 3-torsieondergroepen.

In hoofdstuk 3 laten wij zien dat alle elliptische krommen in de bovenstaande
familie dezelfde Galoisvoorstelling hebben op de 3-torsieondergroep en geven wij
een eenvoudig bewijs van de universele eigenschap van deze familie: Als E en E′
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zijn beschreven door middel van een Weierstrassvergelijking over k, dan is E′ over
k isomorf met een vezel Et0 voor een zekere t0 in P1(k) dan en slechts dan als
er een symplectisch isomorfisme φ : E[3] → E′[3] bestaat. Wij laten zien dat de
buigpunten van E precies de punten zijn die alle krommen Et0 in het Hessepenceel
E gemeenschappelijk hebben. Voor een elliptische kromme met een Weierstrass-
vergelijking is een buigpunt hetzelfde als een punt van orde 1 of 3. Ook is de Weil-
paring op Et0 [3] hetzelfde voor alle elliptische krommen Et0 . Dus Et0 [3] = E[3]
als groepen en voor de Weilparing. Wij bepalen een Weierstrassvergelijking voor
E en daarmee ook voor Et0 . Een isomorfisme tussen Et0 met Weierstrassverge-
lijking en E′ is nu een projectieve lineaire afbeelding die volledig vast ligt door
zijn beperking tot de 3-torsieondergroepen. Er zijn precies 24 groepsisomorfismen
E[3] → E′[3] die compatibel zijn met de Weilparing, en er zijn evenzoveel iso-
morfismen Et0 → E′ met variërende t0 in P1

(
k
)
. Oftewel als er een symplectisch

isomorfisme tussen E[3] en E′[3] bestaat, dan bestaat er ook een t0 zo dat Et0
over k isomorf is met E′. De universele eigenschap van het Hessepenceel E volgt
nu uit een toepassing van stelling 90 van Hilbert.

De Mestrekromme

Het derde en laatste onderwerp bestaat eigenlijk uit een aantal verschillende deel-
onderwerpen, maar allemaal zijn zij gemotiveerd door de volgende vraag: Hoe ziet
de ontbinding van de Jacobivariëteit van de Mestrekromme er op isogenie na uit?

In hoofdstuk 4 beginnen wij met de vergelijking van de Mestrekromme Ca,b

v2 = gab(u) := −ab
(
u2 + 1

)[
b2
(
u4 + u2 + 1

)3
+ a3

(
u2 + 1

)2
u4
]
,

over een lichaam k. Deze kromme heeft de eigenschap, dat er twee onafhankelijke
morfismen Ca,b → Ea,b bestaan, waarbij Ea,b de elliptische kromme over k is met
vergelijking

y2 = x3 + ax+ b.

Door automorfismen van Ca,b te bepalen en de correspondentie tussen krommen en
functielichamen te benutten, vinden wij quotiëntkrommen van Ca,b. Dit herhalen
wij voor de quotiënten. De automorfismen van een kromme induceren idempotent-
relaties op zijn Jacobivariëteit. Zodoende vinden wij de ontbinding

Jac (Ca,b) ∼k E2
a,b × Jac (Da,b)

2
,

waarbij Da,b de geslacht-2-kromme is met vergelijking

y2 =
(
x3 + ax+ b

)
(ax+ b)(ax− 3b).

Het bestuderen van het karakteristieke polynoom van Frobenius bij p = 17 voor
a = 1, b = 1 laat zien dat Jac (D1,1) geometrisch enkelvoudig is over Q. Daarmee
is ook Jac (Da,b) geometrisch enkelvoudig over Q(a, b). Hieruit concluderen wij,
dat er voor algemene a, b niet nog een derde onafhankelijk morfisme Ca,b → Ea,b
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bestaat. Een computerberekening suggereert dat voor enkele concrete waarden
a0, b0 ∈ Q de Jac (Da0,b0) over Q isogeen is met een product van elliptische
krommen. In tabel 4.1 staan de resultaten voor −1000 ≤ a0, b0 ≤ 1000 met
a0b0

(
4a3

0 + 27b20
)
6= 0. In geen van de gevonden gevallen is Ea0,b0 een factor van

Jac (Da0,b0). Het is ons onbekend of er a0, b0 ∈ Q voorkomen met Ea0,b0 wel een
factor van Jac (Da0,b0). Verder suggereert de berekening dat Jac (D60,20) isogeen
is met E′60,20 × E′′60,20, waarbij

y2 = x3 − 52500x− 5537500

de vergelijking van de elliptische kromme E′′60,20 is en

y2 = x3 − 39x− 70 of y2 = x3 − 219x+ 1190

de vergelijking van de elliptische kromme E′60,20 is.
In hoofdstuk 5 beschrijven wij een expliciete variant van de Faltingsmethode.

Zij G een pro-eindige groep, K een lokaal lichaam, R de ring van gehelen van K en
k het restklassenlichaam van R met karakteristiek p. De methode is een criterium
om te beslissen of gegeven continue voorstellingen ρ1 : G → GLd(R) en ρ2 :
G → GLd(R) isomorf zijn. Het hart wordt gevormd door de afwijkingsafbeelding
δ : G → δ(G) en de afwijkingsgroep δ(G) horende bij de voorstellingen ρ1 en
ρ2, waarbij δ(G) het verschil tussen de karakters van ρ1 en ρ2 meet. In onze
variant benaderen wij δ(G) aan de hand van de kern N van het product van de
restvoorstellingen

ρ̄ = ρ̄1 × ρ̄2 : G −→ GLd(k)×GLd(k).

Onder geschikte voorwaarden heeft de groep δ(N) exponent pe met e een geheel
getal zo dat d ≤ pe. Daarmee kunnen wij onder dezelfde voorwaarden de groep
δ(N) benaderen doorG/Npe , waarbijNpe de topologische afsluiting is van de groep
voortgebracht door alle hp

e

met h ∈ N . Ook laten wij zien dat de groep G/Npe

eindig is dan en slechts dan als het pro-p-quotiënt van N eindig voortgebracht is.
In hoofdstuk 6 bestuderen wij de maximale Galoisuitbreiding KS,4 van een

getallenlichaam K onvertakt buiten een eindig aantal plaatsen S met een Galois-
groep GS,4 van exponent 4, waarbij K = Q of Q

(
3
√

10
)

en S een verzameling van
plaatsen van K met daarin een aantal priemen boven 2, 3 en 5 en de reële onein-
dige plaats. Bij de volgende resultaten spelen computerberekeningen met Magma
een belangrijke rol. In het algemeen (zie tabel 6.1 voor |GS,4|) is KS,4 te groot is
om uit te rekenen, maar in speciale gevallen is het wel mogelijk: Voor S = {2,∞}
is QS,4 het ontbindingslichaam van een polynoom van graad 8 uit tabel 6.3; voor
S = {2, 3,∞} is QS,4 het compositum van Q{2,∞},4 en de ontbindingslichamen
van een polynoom van graad 16 uit tabel 6.5 of 6.6 en een polynoom van graad
16 uit tabel 6.8. In het laatste geval bepalen wij voor elke conjugatieklasse C
in GS,4 een priem p ≥ 5 met zijn Frobeniuselement boven p in C, zie tabel 6.9.
Hiermee maken wij onze variant van de Faltingsmethode in hoofdstuk 5 volledig
expliciet voor abelse oppervlakken A over Q met goede reductie buiten 2 en 3 en
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met Q(A[2])/Q een 2-uitbreiding, en vinden wij dat er ten hoogstens 2.2 · 101783

isogenieklassen van zulke abelse oppervlakken bestaan. Soortgelijke uitspraken
doen wij voor abelse oppervlakken over Q onvertakt buiten 2. Het lijkt op dit
moment onmogelijk via de Faltingsmethode aan te tonen dat Jac (D60,20) over
Q isogeen is met E′60,20 × E′′60,20, omdat KS,4 in dit geval (K = Q

(
ζ3,

3
√

10
)

en
S bevat de priemen boven 2, 3 en 5) te groot is om uit te rekenen. Een moge-
lijke verbetering is het bestuderen van de maximale exponent-4-uitbreiding van
Q(A1[2], A2[2]) binnen Q(A1[2∞], A2[2∞]) voor abelse oppervlakken Ai in plaats
van KS,4. Wij geven een eerste aanzet voor een elliptische kromme E over Q met
rationale 2-torsieondergroep door gebruik te maken van de arithmetiek van E.

In hoofdstuk 7 passen wij complexe uniformizatie van abelse variëteiten toe
op Jac (D60,20), E′60,20 en E′′60,20 om algebräısche morfismen D60,20 → E′60,20 en
D60,20 → E′′60,20 te vinden en expliciet uit te rekenen, waarbij in dit hoofdstuk de
elliptische kromme E′60,20 de volgende vergelijking heeft:

y2 = x3 − 39x− 70.

De morfismen zijn D60,20 → E′60,20 waarbij (x, y) 7→ (x1, y1) met

x1 =
9x5 − 50x4 + 740x3 + 60x2 − 160x− 32

25x4 − 100x3 + 60x2 + 80x+ 16

y1 =
9

20

x5 − 8x4 − 48x3 − 64x2 − 16x

125x6 − 750x5 + 1200x4 + 200x3 − 960x2 − 480x− 64
y

en D60,20 → E′′60,20 waarbij (x, y) 7→ (x2, y2) met

x2 =
27x5 − 60x4 + 3850x3 + 17700x2 + 11475x+ 2000

3x4 − 8x3 + 6x2 − 1

y2 =
27

20

3x6 − 10x5 − 415x4 − 4780x3 − 6875x2 − 3050x− 425

9x7 − 39x6 + 61x5 − 35x4 − 5x3 + 11x2 − x− 1
y.

Hiermee volgt dat Jac (D60,20) over Q isogeen is met E′60,20 × E′′60,20. Een inte-
ressante vraag is of de morfismen ook via 3-adische uniformizatie te bepalen zijn,
omdat in dit geval beide elliptische krommen potentiële multiplicatieve reductie
bij de priem 3 hebben.
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de l’Académie des sciences. Série I: Mathématique, 314:919–922, 1992.
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