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Chapter 1

Introduction

This master’s thesis is about branched covering spaces of an elliptic curve. An
elliptic curve is a curve of genus one with a special point. Moreover an elliptic
curve has a group structure defined on it, where the special point is the unit of
the group. Another way to consider an elliptic curve is as a Riemann surface.
From a topological perspective the surface is homeomorphic to a torus.

In chapter 2 we give an overview of some topics from algebraic topology and
Riemann surfaces. For example we introduce the concept of a covering spaces
and show how to construct covering spaces. A topic from Riemann surfaces we
discuss, is the analytic continuation of a covering space to a branched covering
space. Finally we put these theories together and make a statement about
branched covering spaces of a torus that branch only above a single point.

In chapter 3 we mention the various results from the theory of commutative
algebra, algebraic geometry and elliptic curves. In particular we discuss concepts
related to the ramification index. Using some of these results we construct an
explicit example of a branched covering space of the type we are interested in.
The other results lay the foundation on which the subsequent chapter is build.

In chapter 4 we set out to construct a family of branched covering spaces of
the elliptic curve C : 4a3 + 27b2 = 1 by adjoining points of some finite order
on another elliptic curve to the function field of C. We are interested in the
ramification index at points on these spaces.
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Chapter 2

Covering spaces

In this chapter we study the existence of branched covering spaces from a topo-
logical perspective. We give a short overview of covering spaces and fundamental
groups in the first section. In the second section we discuss some results about
Riemann surfaces. In the last section we address the existence of branched cov-
ering spaces of a torus. We shall assume that the topological spaces in this
chapter are Haussdorff 1.

2.1 Covering spaces and fundamental groups

We give an overview of the theory of covering spaces and fundamental groups
corresponding to a topological space. More background information on algebraic
topology can be found in the books [1, 3, 7].

Definition 2.1. Let Y be a topological space. If X is a topological space and
p : X → Y is a continuous map with an open covering V of Y such that for
all V ∈ V there are disjoint open subsets Ui ⊂ X such that p−1 (V ) =

⋃
Ui

and p|Ui : Ui → V a homeomorphism, then X is a covering space of Y with
p : X → Y the corresponding covering map.

Definition 2.2. Let X be a covering space of some space Y with p : X → Y
the corresponding covering map. If f : X → X is a homeomorphism such that
p ◦ f = p, then f : X → X is a deck transformation. Write Deck (X/Y ) for the
set of all deck transformations.

The set of deck transformations is a group with the composition of maps
being the group operation. This group is a special case of a group action on a
topological space.

Definition 2.3. Let X be a topological space and G a group. An action of G
on X is an injective group homomorphism G→ Homeo (X,X). If for all x ∈ X
there exists an open subset U ⊂ X with x ∈ U such that U ∩ g (U) = ∅ for all
non-unit g ∈ G, then it is called a properly discontinuous action.

We give an example of these definitions. Let R be the real line and S1 be the
unit circle embedded in the complex plane. Now R is a covering space of S1 with

1Note that Zariski topology in algebraic geometry is not Haussdorff.
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the covering map p : R → S1 such that x 7→ ei2πx. The deck transformations
are of the form fn : R→ R with x 7→ x+ n and n ∈ Z. Thus Deck

(
R/S1

) ∼= Z.

Definition 2.4. Let X be a covering space of Y with covering map p : X → Y .
If for all y ∈ Y and x, x′ ∈ p−1 (y) there is a g ∈ Deck (X/Y ) such that x′ = gx,
then the covering space is called regular.

Given a properly discontinuous action G on a topological space X, we can
construct a new topological space X/G. Let Gx = {gx : g ∈ G} be the orbit of
x ∈ X. Define X/G to be the set of all orbits in X with the quotient topology
induced by the map pG : X → X/G defined as x 7→ Gx.

Proposition 2.5. Let X be a path-connected space and G a group with a prop-
erly discontinuous action on X. Then X is a regular covering space of X/G
with covering map pG : X → X/G and deck transformation group G.

Proof. See [7, proposition 1.40].

Proposition 2.6. If X is a regular path-connected covering space of Y with
surjective covering map p : X → Y and deck transformation group G, then
X/G and Y are homeomorphic.

We need that a local homeomorphism is open, before we can prove the above
proposition. Recall that if f : X → Y is a continuous map and for all open
subsets A ⊂ X the image f (A) is also open, then f is called open.

Lemma 2.7. If f : X → Y is a local homeomorphism, then it is also open.

Proof. Let U ⊂ X be any open subset. For all x ∈ X denote by Vx ⊂ X
the open subset such that x ∈ Vx and f |Vx homeomorphism. Notice that U =⋃
x∈X U ∩ Vx, so that f (U) =

⋃
x∈X f (U ∩ Vx). The sets f (U ∩ Vx) are open,

because f |Vx is a homeomorphism for all x ∈ X. Thus f (U) a union of open
sets, which is again an open set. Hence f : X → Y is open.

Proof of proposition 2.6. Let pG : X → X/G be the covering map from propo-
sition 2.5. The map p factors through pG, because p (x) = p (gx) for all x ∈ X
and g ∈ G. Denote by q : X/G→ Y the continuous map such that p = q ◦ pG.
The map p is open by lemma 2.7 and is surjective by assumption. So q is also
open and surjective.

The map q is injective. Let Gx1, Gx2 ∈ X/G be such that q (Gx1) = q (Gx2).
For i = 1, 2 there are xi ∈ X such that pG (xi) = Gxi. There exists a g ∈ G
such that x2 = gx1, because X is a regular covering of Y and p (x1) = p (x2).
Thus Gx2 = Ggx1 = Gx1.

Hence q is a homeomorphism.

Not only is X a covering space of X/H for any subgroup H ⊂ G, but X/H
is also a covering space of X/G. This allows us to construct various covering
spaces of X/G.

Proposition 2.8. Let X be a path-connected space and G a group with a prop-
erly discontinuous action on X. If H ⊂ G is a subgroup, then X/H is a covering
space of X/G with covering map pH,G : X/H → X/G defined as Hx 7→ Gx.
Moreover X/H is a regular covering space of X/G if and only if H is a normal
subgroup.
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Proposition 2.9. Let X be a path-connected and locally path-connected topo-
logical space and G a group with a properly discontinuous action on X. If Y is
a path-connected covering space of X/G with covering map q : Y → X/G and
X is a covering space of Y with covering map r : X → Y such that pG = q ◦ r,
then there exists a subgroup H ⊂ G such that X/H and Y are homemorphic
and the following diagram commutes

X
r //

pH !!CC
CC

CC
CC

Y
q //

��

X/G

X/H

pH,G

;;xxxxxxxx

.

Proof. See [7, exercise 1.3.24].

With the following proposition, we are able to compute the size of p−1
H,G (Gx)

for some point Gx ∈ X/G. If X is a path-connected covering space of Y with
covering map p : X → Y , then p−1 (y) is of the same size for all y ∈ Y and is
called the number of sheets.

Proposition 2.10. Let X be a path-connected topological space and G a group
with a properly discontinuous action on X. If H ⊂ G is a subgroup, then∣∣∣p−1

H,G (Gx)
∣∣∣ = [G : H]

for all Gx ∈ X/G.

Proof. Let Gx ∈ X/G be any point and x ∈ X be a point such that pG (x) = Gx.
Define ρ : {Hg : g ∈ G} → p−1

H,G (Gx) as Hg 7→ Hgx. For all Hy ∈ p−1
H,G (Gx)

there exists a y ∈ X such that pH (y) = Hy and a g ∈ G such that y = gx.
Therefore ρ (Hg) = Hgx = Hy, that is ρ is surjective.

Suppose that ρ (Hg1) = ρ (Hg2), then Hg1x = Hg2x. So there exists
h1, h2 ∈ H such that h1g1x = h2g2x. The unique lifting property [7, proposition
1.34] gives h1g1 = h2g2. Hence Hg2 = Hg1, so that ρ is injective.

The map ρ is a bijection between the set of right-cosets and p−1
H,G (Gx). The

index [G : H] is the cardinality of the set of cosets. Thus [G : H] is equal to the
cardinality of p−1

H,G (Gx).

Let X be a topological space. We assign a group π1 (X,x0) called the funda-
mental group to the spaceX with x0 ∈ X some point called the basepoint. Define
a continuous map f : I → X with I = [0, 1] to be a path. If f (0) = x0 = f (1),
then f is called a loop at x0. Let g : I → X be another path. The paths f
and g are equivalent, if there exists a continuous map F : I × I → X such
that F (s, 0) = f (s) and F (s, 1) = g (s) for all s ∈ I and F (0, t) and F (1, t)
constant for all t ∈ I. As a set π1 (X,x0) is the set of equivalence classes of
loops at x0. The group law follows from concatenating two paths f and g.

If X is a path-connected space with a trivial fundamental group, then X is
called simply-connected.

Definition 2.11. Let X be a path-connected topological space. If X̃ is a
simply-connected covering space of X, then X̃ is called the universal covering
space of X.
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A universal covering space X̃ of X has a universal property. If Y is a path-
connected covering space of X, then X̃ is also a universal covering space of Y
such that the following diagram commutes

X̃

��@
@@

@@
@@

//_______ Y

����
��

��
��

X

where the maps are the covering maps. This property implies that the universal
covering space is unique, if it exists.

Proposition 2.12. If X is a path-connected, locally path-connected and locally
simply-connected space, then there exists a universal covering space of X.

Proof. Special case of [1, theorem III.8.4] or [3, theorem 13.20].

We are now able to classify all the path-connected covering spaces of X, if
X is locally path-connected and has a universal covering space X̃. A universal
covering space is regular, thus proposition 2.6 implies that X and X̃/G with

G = Deck
(
X̃/X

)
are homeomorphic. Let Y be any path-connected covering

space of X, then X̃ is also a covering space of Y by the universal property. So
there exists a subgroup H ⊂ G such that Y and X̃/H are isomorphic covering
spaces by proposition 2.9.

Proposition 2.13. Let X̃ be the universal covering space of X and x0 ∈ X be

any point. Then Deck
(
X̃/X

)
∼= π1 (X,x0).

Proof. See [1, corollary III.6.10], [7, proposition 1.39] or [3, theorem 13.11].

The next proposition we present is a special case of the van Kampen theorem.
It allows us to compute the fundamental group of a space.

Proposition 2.14. Let X be a topological space and x0 ∈ X some point. If
U, V ⊂ X are path-connected subsets such that U ∩ V is simply-connected, X =
U ∪ V and x0 ∈ U ∩ V , then

π1 (U, x0) ∗ π1 (V, x0) ∼= π1 (X,x0)

where ∗ denotes the free product of groups.

Proof. See [1, corollary III.9.5], [3, corollary 14.9] or [7, theorem 1.20].

2.2 Riemann surfaces

In this section we discuss some of the aspects of the theory of Riemann surfaces.
We focus on branched covering spaces and analytic continuations thereof. More
information on Riemann surfaces can be found in [2, 3].

First we give the definition of a Riemann surface. Let X be a topological
space. An open subset U ⊂ X with a homeomorphism ϕU : U → VU ⊂ C is
a chart. If X is connected and there exists a set of charts such that the set
of all open subsets U is an open cover of X and ϕU2

◦ ϕ−1
U1

: ϕU1
(U1 ∩ U2) →
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ϕU2
(U1 ∩ U2) is a holomorphism for all U1, U2 ∈ U , then X with this set of

charts is called a Riemann surface.
Next we give the definition of a holomorphism between Riemann surfaces.

Let X be a Riemann surface with U the set of charts and let Y be another
Riemann surface with V the set of charts. If f : X → Y is a continuous map
such that ϕV ◦ f ◦ ϕ−1

U : ϕU
(
U ∩ f−1 (V )

)
→ ϕV (V ) is a holomorphism for all

U ∈ U and V ∈ V, then f is called a holomorphism.

Definition 2.15. Let X and Y be Riemann surfaces. If p : X → Y is a non-
constant holomorphic map, then X is a branched covering space of Y . A point
x ∈ X is called a ramification point, if for all open subsets U ⊂ X with x ∈ U
the map p|U is not injective. The image of a ramification point is called a branch
point.

We may restrict a branched covering space with a proper holomorphic map
to a covering space. Recall that a continuous map f : X → Y is proper, if for
all compact subsets B ⊂ Y the inverse image f−1 (B) is also compact.

Proposition 2.16. Let X be a branched covering space of Y with the map
p : X → Y . If p is proper, then a closed discrete subset A ⊂ X exists such
that X ′ = X \ A is a covering space of Y ′ = Y \ p (A) with covering map
p|X′ : X ′ → Y ′.

Proof. See [2, remark 4.23].

In some cases we can do the opposite of the above proposition, that is we
extend a covering space to a larger branched covering space.

Proposition 2.17. Let X ′ and Y be Riemann surfaces and B ⊂ Y a closed
discrete subset. If X ′ is a covering space of Y ′ = Y \B with a proper holomorphic
covering map p′ : X ′ → Y ′, then p′ extends to a unique proper holomorphic map
p : X → Y with X ′ ⊂ X and p|X′ = p′. Moreover if X is a covering space of
Y , then Deck (X ′/Y ′) = Deck (X/Y ).

Proof. The proposition follows from [2, theorems 8.4 and 8.5].

The covering map in the previous proposition needs to be proper. In the
next section we are interested in covering spaces with a finite number of sheets.
It turns out that for such covering spaces the covering map is always proper.

Proposition 2.18. Let X be a covering space of Y with covering map p : X →
Y . If the number of sheets is finite, then p is proper.

Proof. Denote by n the finite number of sheets. Let B ⊂ Y be any compact
subset. Define A = f−1 (B) and suppose that U is an open covering of A.

Let y ∈ B be any point and p−1 (y) = {x1, x2, . . . , xn}. There exist open
subsets Wi ⊂ X for i = 1, . . . , n and V ⊂ Y such that the Wi’s are disjoint,
xi ∈ Wi, y ∈ V and p|Wi : Wi → V a homeomorphism, because p is a covering
map. Moreover for all xi there exists a Uy,i ∈ U such that xi ∈ Uy,i. Define
Vy =

⋂n
i=1 p (Uy,i ∩Wi). This subset of Y is open, because Uy,i and Wi are

open, p is an open map by lemma 2.7 and the intersection is finite. Obviously
y ∈ Vy and Vy ⊂ V . Define Wy,i = p−1 (Vy) ∩Wi, then p−1 (Vy) =

⋃n
i=1Wy,i.

Furthermore Wy,i ⊂ Uy,i, because if x ∈ Wy,i then x ∈ Wi and p (x) ∈ Vy ⊂
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p (Uy,i ∩Wi) so there is a y ∈ Uy,i ∩Wi such that p (x) = p (y) which implies
x = y ∈ Uy,i since p|Wi

is a homeomorphism.
The collection of sets V = {Vy : y ∈ B} is an open covering of B and B is

compact, so there exists a finite subcovering. Let y1, . . . , ym ∈ B be the points
such that B ⊂

⋃m
i=1 Vyi . The finite subcollection

Ũ = {Uyi,j ∈ U : i = 1, . . . ,m and j = 1, . . . , n}

is an open covering of A, because if x ∈ A then p (x) ∈ Vyi for some i so

x ∈ p−1 (Vyi) =

n⋃
j=1

Wyi,j ⊂
n⋃
j=1

Uyi,j ⊂
⋃
U∈Ũ

U.

Hence for any open covering U of A there exists a finite subcovering Ũ , so
A is compact. Thus for any compact subset B, the inverse image A is also
compact. Hence p is proper.

Proposition 2.19. Let X be a covering space of Y with covering map p : X →
Y . If Y is a Riemann surface, then it induces a complex structure on X such
that X is a Riemann surface and p a holomorphism.

Proof. See [2, theorem 4.6].

Suppose that we have a Riemann surface Y and B ⊂ Y a closed discrete
subset. From the previous three propositions follows that a covering space of
Y/B with a finite number of sheets can be extended to a branched covering
space of Y . This is summarized in the next theorem.

Theorem 2.20. Let Y be a Riemann surface and B ⊂ Y a closed discrete
subset. If X ′ is a covering space of Y ′ = Y \ B with p′ : X ′ → Y ′ the covering
map and a finite number of sheets, then X ′ extends to a Riemann surface X
and p′ to a proper holomorphic map p : X → Y . Moreover if X is a covering
space of Y , then Deck (X/Y ) = Deck (X ′/Y ′).

Proof. Let X ′ be a finite covering space of Y ′ = Y \ B with p′ : X ′ → Y ′ the
covering map and a finite number of sheets. There exists a complex structure
such that Y ′ is a Riemann surface and p′ is a holomorphism by proposition
2.19. The map p′ is proper by proposition 2.18. Now X ′ extends to a Riemann
surface X and p′ to a proper holomorphic map p : X → Y by proposition 2.17.
The last statement follows directly from the latter proposition.

Proposition 2.21. Let X be a Riemann surface and G a group with a properly
discontinuous action on X. If g is a holomorphism for all g ∈ G, then the space
X/G is a Riemann surface and the covering map p : X → X/G is holomorphic.

Let X be a branched covering space of Y with covering map p : X → Y .
For all points x ∈ X there exists charts ϕUX : UX → VUX with x ∈ UX ⊂ X
and ϕUY : UY → VUY with p (x) ∈ UY ⊂ Y such that ϕUY ◦ p ◦ ϕ−1

UX
(z) = zn

for all z ∈ VUX and some nx ∈ Z>0. The number nx is called the ramification
index of p at x and is denoted by ep (x). Notice that ep (x) > 1 if and only if x
is a ramification point.
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Figure 2.1: A torus can be defined as a square with opposite edges identified as
indicated by the arrows.

Proposition 2.22 (Riemann-Hurwitz). Let X and Y be compact Riemann
surfaces. If X is a branched covering space of Y with covering map p : X → Y
and n sheets, then

2 (gX − 1) = 2n (gY − 1) +
∑
x∈X

(ep (x)− 1)

where gX is the genus of X and gY the genus of Y .

Proof. See [2, remark 17.14] or [3, theorem 19.15].

2.3 Branched covering spaces of a torus

In this section we will study branched covering spaces of a torus. We give the
definition of a torus. Hereafter we describe all covering spaces of a torus by
using the techniques from section 2.1. We also prove the existence of branched
covering spaces of a torus branched above exactly one point by using the results
from section 2.2.

We can define a torus in several ways. For example a torus can be defined
as a square with opposite edges identified as shown in figure 2.1. We define it
as T = S1 × S1, that is, a product of two unit circles.

The universal covering space of a torus can be obtained as follows. Recall
that R is a covering space of S1 with the covering map R → S1 defined as
x 7→ ei2πx. The product of two covering spaces is again a covering space. Thus
we obtain a covering space R2 = R × R of T = S1 × S1 with covering map
p : R2 → T defined as (x1, x2) 7→

(
ei2πx1 , ei2πx2

)
. In fact this is the universal

covering space of the torus, because R2 is simply-connected.

Proposition 2.23. Let p : R2 → T be the universal covering of a torus. There
exists a group isomorphism Z2 → Deck

(
R2/T

)
.
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Proof. Define a map ρ : Z2 → Deck
(
R2/T

)
as n 7−→ (x 7→ x+ n). This is

well-defined because ei2π(xi+ni) = ei2πxi for ni ∈ Z. Clearly ρ is an injective
homomorphism. Suppose that f : R2 → R2 is a deck transformation. Thus for
all x = (x1, x2) ∈ R2 holds that p ◦ f (x) = p (x), that is(

ei2πf1(x), ei2πf2(x)
)

=
(
ei2πx1 , ei2πx2

)
.

This implies that f (x) = x+nx with nx ∈ Z2 for all x ∈ R. Define g = f− idR2 .
Notice that g (x) = nx ∈ Z2 for all x ∈ R2, so that g : R2 → Z2. Since g is
continuous, R2 is connected and Z2 discrete, then g must be constant. Thus
there exists a n ∈ Z2 such that g (x) = n for all x ∈ R2, that is f = ρ (n). Hence
ρ is also surjective, which makes ρ a group isomorphism.

Now we have obtained another way to define a torus. Recall that a universal
covering space is regular. So from proposition 2.6 and 2.23 follows that R2/Z2

and T are homeomorphic. Moreover R2 can be considered as a Riemann surface
C and Z2 acts analytically on C, so that R2/Z2 is also a Riemann surface by
proposition 2.21.

We are now able to write down all the connected covering spaces of a torus.
Proposition 2.9 tells us that any connected covering space of a torus corresponds
to a subgroup of G = Z2. These subgroups have rank at most two. The universal
covering space corresponds to the trivial group, that is the subgroup of rank
zero. A subgroup of rank one corresponds to a infinitely long cylinder and is a
covering space with an infinite number of sheets. In particular a finite connected
covering space of the torus is itself a torus and corresponds to a subgroup of
rank two.

All the connected covering spaces of a torus are now known. We like to
construct a connected branched covering space of the torus, which branches only
above a single point of the torus. Thus we seek a covering space of S = T − t
for some point t ∈ T such that it can be continued to a branched covering space
of T , but not to a covering space of T .

First we will compute the fundamental group of S. Consider the definition
of a torus in figure 2.1. Let L1 be the line with the single arrow, L2 be the
line with the double arrow, t be the corner point of the square and s0 the point
in center of the square. Define the open sets U = S \ L1 and V = S \ L2.
Notice that U ∩ V = S \ (L1 ∪ L2) is simply-connected and U ∪ V = S. Thus
by proposition 2.14 we have

π1 (S, s0) = π1 (U, s0) ∗ π1 (V, s0) ∼= Z ∗ Z,

because U , V are homotopy equivalent with S1 and π1

(
S1, ·

) ∼= Z. Hence we
have proved the following proposition.

Proposition 2.24. Let s0 ∈ S be any point. Then π1 (S, s0) ∼= Z ∗ Z.

We are now able to prove the following theorem.

Theorem 2.25. There exists a branched covering space of a torus with precisely
one branch point.
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Proof. Recall that T is a Riemann surface and S = T − t for some point t.
Thus S is also a Riemann surface. Moreover S is path-connected, locally path-
connected and locally simply-connected. Therefore S has a universal covering
space S̃ with the deck transformation group

Deck
(
S̃/S

)
∼= π1 (S, s) ∼= Z ∗ Z

by propositions 2.12 and 2.13.
Let G = 〈a, b〉 = Z∗Z be the free group on two generators a and b. Consider

the surjective homomorphism f : G → S3 defined as a 7→ (12), b 7→ (23).
Define H = ker f . Let X = S̃/H be the covering space of S corresponding to
H. It is a regular covering space, because H is normal. The number of sheets
is finite, because S3 is finite and proposition 2.10. Theorem 2.20 implies that
X extends to a branched covering space Y of T . By construction it does not
branch above any point of S. Suppose that t is also not a branch point, then Y
is a covering space of T , so that Deck (X/S) = Deck (Y/T ) and Deck (Y/T ) is
abelian. However Deck (X/S) ∼= S3 is not abelian. Therefore Y is not a covering
space of T and must branch in t.

In the above proof we constructed a branched covering space of a torus with
six sheets. The following proposition shows that the number of sheets can be
reduced to three.

Proposition 2.26. There exists a branched covering space of a torus with three
sheets and precisely one ramification point. The ramification index of that point
is three.

Proof. Let G and f : G → S3 be as in the proof of theorem 2.25. Define
Ã = {id, (12)}. It is a non-normal subgroup of S3 and corresponds to a non-
normal subgroup A ⊂ G such that H ⊂ A. Let XA be the covering space

of S corresponding to A. It has three sheets, because [G : A] =
[
S3 : Ã

]
= 3

and proposition 2.10. The space XA extends to a branched covering space YA
of T with a proper holomorphic covering map p : YA → T by theorem 2.20.
Again it does not branch above S. Suppose that t is not a branch point, then
Y is non-regular covering space of T , but any covering space of T is regular.
Thus t is a branch point. Notice that T is compact and the covering map p is
proper, therefore YA is also compact. From proposition 2.22 and ep (x) = 1 for
all x ∈ XA follows that ∑

x∈p−1(t)

(ep (x)− 1) ≡ 0 mod 2.

Moreover
∑
x∈p−1(t) ep (x) equals the number of sheets and

∣∣p−1 (t)
∣∣ < 3. Hence∣∣p−1 (t)

∣∣ = 1 and ep (y) = 3 for y ∈ p−1 (t).

We remark that the branched covering space of the torus constructed in the
above proposition has genus two as follows from proposition 2.22.
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Chapter 3

Algebraic geometry and
elliptic curves

In this chapter we present an overview of the completion of a discrete valuation
ring, algebraic geometry, elliptic curves and small Galois extension. We give
references to the literature if necessary. At the end of this chapter we present an
explicit example of a branched covering space of an ellitpic curve that branches
only above a single point.

3.1 Discrete valuations and completions

We will give an overview of the theory of fields with a discrete valuation, the
completion of a discrete valuation ring and field extensions thereof. For more
information on discrete valuations see [8].

Definition 3.1. Let K be a field. A discrete valuation is a surjective map v :
K → Z∪{∞} such that v (xy) = v (x) +v (y) and v (x± y) ≥ min {v (x) , v (y)}
for all x, y ∈ K.

A field with a discrete valuation has useful properties. A discrete valuation
ring is the set R = {x ∈ K : v (x) ≥ 0}. It is a ring and has a unique maximal
ideal m = {x ∈ K : v (x) > 0}. The ideal m is generated by any uniformizer,
which is an element x ∈ K such that v (x) = 1. An element x ∈ R is a unit of
R if and only if v (x) = 0. If t is a uniformizer of R and x ∈ R is non-zero, then
there is a unit u ∈ R such that x = utn with n = v (x).

A field with a discrete valuation has a norm defined on it, namely |x|v =
c−v(x) for all x ∈ K with c ∈ R>1 some constant. Thus the field and the discrete
valuation ring are metric spaces and we could ask if they are complete. Below
we define the completion of a discrete valuation ring.

Definition 3.2. Let K be a discrete valuation field with R its discrete valuation
ring. The completion of R is

R̂ =
{

(x1, x2, . . .) ∈ R/m×R/m2 × · · · : ρn (xn+1) = xn ∀n ≥ 1
}

with ρn : R/mn+1 → R/mn the homomorphism obtained from factoring the
canonical homomorphism πn : R → R/mn through πn+1 : R → R/mn+1. The
quotient field of R̂ and is denoted by K̂.

17
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Proposition 3.3. Let R be a discrete valuation ring. The set R̂ is a discrete
valuation ring. The map π : R → R̂ defined as x 7→ (π1 (x) , π2 (x) , . . .) is an
injective homomorphism such that v (x) = v ◦ π (x) for all x ∈ R. Moreover R̂
and K̂ are complete.

Proof. The set R̂ is a subring of the product of rings R/m × R/m2 × · · · as a
straightforward calculation will show. Define vR̂ : R̂→ Z ∪ {∞} as

vR̂ (x) =

{
∞ if x = 0,

min {n ∈ Z≥0 : xn+1 6= 0} otherwise.

Let x, y ∈ R̂. If x = 0 or y = 0, then vR̂ (xy) = vR̂ (x) +vR̂ (y) and vR̂ (x± y) ≥
min

{
vR̂ (x) , vR̂ (y)

}
are trivial. Suppose that x 6= 0 and y 6= 0. Denote nx =

vR̂ (x) and ny = vR̂ (y). Define n = nx + ny and let x̃, ỹ ∈ R be such that
πn+1 (x̃) = xn+1 and πn+1 (ỹ) = yn+1. Notice that v (x̃) = nx and v (ỹ) = ny.
Thus v (x̃ỹ) = v (x̃) + v (ỹ) = nx + ny = n. So

(xy)n+1 = xn+1yn+1 = πn+1 (x̃)πn+1 (ỹ) = πn+1 (x̃ỹ) 6= 0.

If n > 0, then in the same way (xy)n = 0. Thus vR̂ (xy) = n = nx + ny =
vR̂ (x) + vR̂ (y). Define m = min {nx, ny}. If m = 0, then vR̂ (x± y) ≥ 0 = m,
else πm (x̃) = 0 and πm (ỹ) = 0 so that

(x± y)m = xm ± ym = πm (x̃)± πm (ỹ) = 0

that is vR̂ (x± y) ≥ m. Therefore

vR̂ (x± y) ≥ m = min {nx, ny} = min
{
vR̂ (x) , vR̂ (y)

}
.

Hence R̂ is a discrete valuation ring with discrete valuation vR̂.

The map π : R → R̂ is a homomorphism, because πn : R → R/mn are
homomorphisms for all n ∈ Z>0. Assume that x ∈ kerπ, then πn (x) = 0 for all
n ∈ Z>0, that is x ∈ mn for all n ∈ Z>0. So x ∈

⋂∞
n=1m

n = {0}, since R is
Noetherian [8, lemma 8.3]. Hence x = 0, that is π is injective.

Let
(
x(n)

)
with x(n) ∈ R̂ be a Cauchy sequence. For all n ∈ Z>0 there

exists a Nn ∈ Z>0 such that
∣∣x(i) − x(j)

∣∣ < c−n for all i, j ∈ Z≥Nn . Moreover∣∣x(i) − x(j)
∣∣ = c−vR̂(x(i)−x(j)). Therefore vR̂

(
x(i) − x(Nn)

)
> n for all i ∈ Z≥Nn .

Define yn = x
(Nn)
n for all n ∈ Z>0 and y = (y1, y2, . . .). Now y ∈ R̂, because for

all n ∈ Z>0 it holds that ρn

(
x

(i)
n+1

)
= x

(i)
n , x

(i)
n = x

(Nn)
n and x

(i)
n+1 = x

(Nn+1)
n+1 for

all i ∈ Z≥max{Nn,Nn+1}, so that for all n ∈ Z>0 and N = max {Nn, Nn+1}

ρn (yn+1) = ρn

(
x

(Nn+1)
n+1

)
= ρn

(
x

(N)
n+1

)
= x(N)

n = x(Nn)
n = yn.

Let ε > 0 and n = min
{
n′ ∈ Z>0 : n′ > − logc

(
ε
2

)}
, then

∣∣x(i) − x(Nn)
∣∣ < ε

2 for

all i ∈ Z≥Nn . Moreover
(
x(Nn) − y

)
n

= 0, that is vR̂
(
x(Nn) − y

)
≥ n. Therefore∣∣x(i) − y

∣∣ ≤ ∣∣x(i) − x(Nn)
∣∣+
∣∣x(Nn) − y

∣∣ < ε
2 + c−n = ε for all i ∈ Z≥Nn . Hence

limn→∞ x(n) = y ∈ R̂, that is R̂ is complete.
Consider a Cauchy sequence

(
x(n)

)
in K̂. Assume that there exists a sub-

sequence
(
y(n)

)
such that vK̂

(
y(n)

)
> vK̂

(
y(n+1)

)
for all n ∈ Z>0, then it is
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again a Cauchy sequence. So for all n ∈ Z there exists a Nn ∈ Z>0 such that∣∣y(i) − y(j)
∣∣ < c−n for all i, j ∈ Z≥Nn . Thus vK̂

(
y(i)
)

= vK̂
(
y(i) − y(Nn)

)
> n

for all i ∈ Z>Nn , which contradicts that
(
vK̂
(
y(n)

))
is a strictly monotonically

decreasing sequence in Z. So the subsequence
(
y(n)

)
does not exists. Therefore

there is a m ∈ Z such that vK̂
(
x(n)

)
≥ m for all n ∈ Z>0. Let t be a uniformizer

of R̂. The sequence
(
z(n)

)
with z(n) = x(n)t−m is Cauchy in R̂ and has a limit

z ∈ R̂. So x = ztm is the limit of the sequence
(
x(n)

)
. Hence K̂ is complete.

In some sense the completion of a discrete valuation ring is simpler than
than the original ring. For example we can compute the roots of a polynomial
in a number of cases using Hensel’s Lemma [10, lemma IV.1.2].

Theorem 3.4 (Hensel’s lemma). Let R be a discrete valuation ring and F ∈
R̂ [X] be a polynomial. If an element x′ ∈ R̂ satisfies v (F (x′)) = n for some
n ∈ Z>0 and v

(
dF
dX (x′)

)
= 0, then there exists a unique element x ∈ R̂ such

F (x) = 0 and v (x− x′) ≥ n.

Suppose that we have two discrete valuation rings RK and RL. If RK is a
subring of RL and mK a subset of mL, then R̂K is a subring of R̂L. In some
cases the completions are in fact equal.

Proposition 3.5. Let K and L be discrete valuation fields such that RK ⊂ RL
and mK ⊂ mL. If RL ⊂ K̂, then K̂ = L̂.

Proof. Let x ∈ RL be non-zero. From RL ⊂ K̂ follow that there exists a unit

u ∈ R̂K such that x = ut
vK(x)
K with tK a uniformizer of RK . In fact u is also a

unit of R̂L. Therefore

vL (x) = vL (u) + vK (x) vL (tK) = vK (x) vL (tK) .

It follows that vL (tK) = 1, because 1 = vL (tL) = vK (tL) vL (tK) for a uni-
formizer tL ∈ RL and vL (tK) ≥ 0 since RK ⊂ RL. Thus vL (x) = vK (x). So
RK ⊂ RL ⊂ R̂K and mK ⊂ mL ⊂ m̂K . Hence K̂ ⊂ L̂ ⊂ K̂, that is K̂ = L̂.

The ring of formal power series k [[X]] over a field k is a discrete valuation
ring. The valuation assigns to an element a =

∑∞
i=0 aiX

i the integer n such
that an is non-zero and ai = 0 for all i = 0, . . . , n − 1. In some special cases
the completion of a discrete valuation ring is isomorphic to some formal power
series ring as the following proposition shows.

Proposition 3.6. Let R be a discrete valuation ring. If k ⊂ R is a field such
that π1|k : k → R/m is surjective, then R̂ = k [[t]] for any uniformizer t of R.

Proof. Let t be a uniformizer of R. If the map α : k [[X]]→ R̂ given by

∞∑
i=0

aiX
i 7−→

∞∑
i=0

ait
i.

is a well-defined isomorphism, then the proposition follows.
The map α is a well-defined map of sets, because the infinite sum

∑∞
i=0 ait

i

is the limit of the Cauchy sequence
(∑n

i=0 ait
i
)

and R̂ is a complete metric
space. It is a ring homomorphism for a similar reason.
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The map α is injective. Assume that there exists a non-zero x ∈ kerα, then
x = uXn for some unit u and integer n = v (x). Since a unit cannot be in the
kernel of a ring homomorphism, then n > 0, so Xn ∈ kerα, which contradicts
α (Xn) = tn 6= 0. Hence such a x does not exist.

The map α is also surjective. Let x ∈ R̂ be any element. The map π1|k
is injective, because k is a field. So π1|k is an isomorphism and let ρ be the
inverse. Notice that π1 ◦ ρ = idR/m. Define a0 = ρ ◦ π1 (x), then π1 (x− a0) =
π1 (x)−π1 (a0) = 0 so that v (x− a0) > 0. If a0, . . . , an ∈ k are defined such that
v
(
x− α

(∑n
i=0 aiX

i
))
> n, then let y ∈ R̂ be such that x − α

(∑n
i=0 aiX

i
)

=
ytn+1. Define an+1 = ρ ◦ π1 (y), then

v

(
x− α

(
n+1∑
i=0

aiX
i

))
= v

(
ytn+1 − an+1t

n+1
)

= v (y − an+1) + n+ 1 > n+ 1,

because π1 (y − an+1) = π1 (y) − π1 (an+1) = 0. By induction this gives an
element

∑∞
i=0 aiX

i ∈ k [[X]] such that α
(∑∞

i=0 aiX
i
)

= x.

Hence α : k [[X]]→ R̂ is a ring isomorphism.

Proposition 3.7. Let L/K be discrete valuation fields such that RK ⊂ RL and
mK ⊂ mL. If L/K is an algebraic extension, then RL/ml is also an algebraic
extension of RK/mK .

Proof. Denote lK = RK/mK and lL = RL/mL. Let πK : RK → lK and
πL : RL → lL be the canonical homomorphisms. Write the injective homo-
morphism corresponding to RK ⊂ RL as i : RK → RL. The kernel of the
ring homomorphism πL ◦ i : RK → lL contains the maximal ideal mK , so it is
equal to mK . Hence the map factors through πK and induces an injective ring
homomorphism ı̃ : lK → lL. Thus lL is an extension of lK .

Suppose that L is algebraic over K. Let x̃ ∈ lL, then there is a x ∈ RL
such that πL (x) = x̃. In fact x ∈ L so there is a F =

∑n
i=0 aiX

i ∈ K [X] of
positive degree n such that F (x) = 0. Assume that m = mini=0,...,n v (ai) = 0,
otherwise G = t−mF for some uniformizer t does satisfy this condition. In
particular v (ai) = 0 for some i > 0, otherwise

0 = v (a0) = v

(
n∑
i=1

aix
i

)
≥ min
i=1,...,n

(
v (ai) + v

(
xi
))
> 0

since v (ai) > 0 for i = 1, . . . , n and v (x) = 0. Thus F̃ =
∑n
i=0 ãiX

i ∈ lK [X]

with ãi = πK (ai) has positive degree and F̃ (x̃) = πL (F (x)) = 0. So x̃ is
algebraic over lK . Hence lL is an algebraic extension of lK .

The ring of formal Laurent series k ((X)) is the quotient field of k [[X]].
Given that the field k is algebraically closed and of characteristic zero, then
any finite extension of the formal Laurent series ring is again such a ring k ((Y ))
with Y n = X and n some positive integer [14]. We describe this in the following
proposition and corollary.

Proposition 3.8. Let L/K be discrete valuation fields such that RK ⊂ RL,
mK ⊂ mL, kK ⊂ RK with πK |kK an isomorphism and kL ⊂ RL with πL|kL an
isomorphism. If kL/kK is finite and kK has characteristic zero, then L̂/K̂ is
also finite.
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Proof. Let tK ∈ RK and tL ∈ RL be uniformizers. Proposition 3.6 implies that
R̂K = kK [[tK ]] and R̂L = kL [[tL]]. Define n = vL (tK) with vL the discrete
valuation of L. Let u ∈ RL be a unit such that tK = utnL. Notice that n > 0,

because mK ⊂ mL. Define F = Xn−u ∈ R̂L [X], then dF
dX = nXn−1. Consider

G = Xn − u′ ∈ kL [X] with u′ = πL|−1
kL
◦ πL (u) ∈ kL. Since u is a unit, then u′

is also a unit. Let kM be a splitting field for G and x′ be a root of G [5, theorem
7.3], then kM/kL is finite. Define R̂M = kM [[tL]] and denote the discrete
valuation by vM . Now vM (F (x′)) > 0 and dF

dX (x′) is a unit. Hensel’s lemma

implies that there exists a x ∈ R̂M such that F (x) = 0. Define tM = xtL,
then tnM = tK . Also tM ∈ R̂M is a uniformizer, because x is a unit. Hence

R̂K ⊂ R̂L ⊂ R̂M = kM [[tM ]] with tK = tnM and kM/kL finite.
The extension kM/kK is finite, because kM/kL and kL/kK are finite. Let

x1, . . . , xm ∈ kM be a basis of kM/kK . Take any f =
∑
i ait

i
K ∈ kM ((tK)).

There exists aij ∈ kK such that ai = ai1x1+· · ·+aimxm. Define fj =
∑
i aijt

i
K ∈

K̂. Now f = f1x1 + · · ·+ fmxm, so that {x1, . . . , xm} is a set of generators for
kM ((tK)) /K̂.

Define M̂ = kM ((tM )) and yi = tiM for i = 0, . . . , n − 1. The yi’s are
linear independent over kM ((tK)), otherwise c0y0 + . . . cn−1yn−1 = 0 with
ci ∈ kM ((tK)) not all zero and vM (cαyα) = vM (cβyβ) for some α 6= β, but

vM (ciyi) ≡ i mod n and α 6≡ β mod n. Take any f =
∑
i ait

i
M ∈ M̂ and

define fj =
∑
i ani+jt

i
K ∈ kM ((tK)), then f = f0y0 + · · ·+ fn−1yn−1. Thus the

set {y0, . . . , yn−1} is a basis of M̂/kM ((tK)).
The extension L̂/K̂ is finite, because L̂ ⊂ M̂ and both M̂/kM ((tK)) and

kM ((tK)) /K̂ are finite.

Corollary 3.9. Let L/K be discrete valuation fields such that RK ⊂ RL, mK ⊂
mL, kK ⊂ RK an algebraically closed field of characteristic zero and πK |kK
an isomorphism. If RL/mL is an algebraic extension of RK/mK , then L̂/K̂ is

Galois and Gal
(
L̂/K̂

)
∼= Z/nZ with n = vL (tK) for any uniformizer tK ∈ RK .

Proof. Denote k = kK . Notice that RL/mL = RK/mK , because RK/mK
∼= k

is algebraically closed. Thus πL|kL with kL = k is also an isomorphism. Let kM ,
tM and M̂ be as in the proof of the proposition, then also k = kM . Therefore
K̂ = k ((tK)) and L̂ = M̂ = k ((tM )). In fact L̂ = K̂ (tM ) with tM a root
of F = Xn − tK . Let ω ∈ kK be a primitive n-th root of unity, then F =∏n
i=0

(
X − ωitM

)
. The polynomial F is irreducible over K̂, otherwise tmM ∈ K̂

for some 0 < m < n and tK = tnM so that 0 < vK (tmM ) < 1. The extension L̂/K̂

is normal and separable, because L̂ is a splitting field for F and ωitM 6= ωjtM
for i 6= j. So L̂/K̂ is Galois.

Let σ ∈ Gal
(
L̂/K̂

)
, then σ (tM ) = ωitM . Moreover σ (tM ) determines σ

σ
(
c0 + c1tM + · · ·+ cn−1t

n−1
M

)
= c0 + c1σ (tM ) + · · ·+ cn−1σ (tM )

n−1
.

Define σi ∈ Gal
(
L̂/K̂

)
such that σi (tM ) = ωitM . The map Z → Gal

(
L̂/K̂

)
defined as i 7→ σi is a surjective group homomorphism, because σi+j (tM ) =
ωi+jtM = σi ◦σj (tM ) and σ = σi for some i. The kernel is nZ, because σn = id
and σi = id implies that ωi = 1, that is, n divides i since ω is a primitive n-th

root of unity. Hence it induces a group isomorphism Z/nZ→ Gal
(
L̂/K̂

)
.
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This corollary allows us to determine the value of vL (tK) using only the
completions L̂ and K̂. In particular if L is an algebraic extension of K, then
RL/mL is an algebraic extension of RK/mK by proposition 3.7, so that L̂ is a
finite Galois extension of K̂ by corollary 3.9.

3.2 Algebraic geometry

We give an overview of some results from algebraic geometry. For more in depth
information we refer the reader to [4, 6, 10].

Let k be an algebraically closed field. A curve C over k is defined as a one
dimensional non-singular projective variety over k. We assign to a curve C the
field k (C) of all rational functions from C to k, which is a function field of
dimension one over k.

Definition 3.10. If K is a finitely generated extension of k with transcendence
degree one, then K is called a function field of dimension one over k.

Suppose that C and D are curves over k. If φ : C → D is a surjective
morphism, then it induces an inclusion φ∗ : k (D) → k (C) of function fields
defined as f 7→ f ◦ φ.

Proposition 3.11. There exists an arrow-reversing equivalence of categories of
the category of non-singular projective curves over k with surjective morphisms
and the category of function fields of dimension one over k with homomorphisms
fixing k. The contravariant functor is

C 7−→ k (C)

φ : C → D 7−→ φ∗ : k (D)→ k (C)

Proof. See [6, corollary I.6.12].

Corollary 3.12. Let C, D1 and D2 be curves over k and φ1 : D1 → C and
φ2 : D2 → C be surjective morphisms. A surjective morphism λ : D1 → D2

such that φ1 = φ2 ◦ λ corresponds to a homomorphism λ∗ : k (D2) → k (D1)
fixing k such that φ∗1 = λ∗ ◦ φ∗2.

The definition of a branched covering space in algebraic geometry is analo-
gous to the definition in the theory of Riemann surfaces.

Definition 3.13. Let C and D be curves over k. If φ : C → D is a surjective
morphism, then C is called a branched covering space of D with φ the covering
map.

Definition 3.14. Let C and D be curves over k and φ : C → D be a surjective
morphism. If λ : C → C is a surjective morphism such that φ ◦ λ = φ, then
λ : C → C is called a deck transformation.

This definition of a deck transformation of a branched covering space is the
same as the definition in the previous chapter. Again the set of all such mor-
phisms is a group. Moreover corollary 3.12 implies that the groups Deck (C/D)
and Gal (k (C) /φ∗k (D)) are isomorphic.
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Let C be a curve over k. At a point P ∈ C we define the local ring as

RP = {f ∈ k (C) : f regular at P} .

The ring RP is a discrete valuation ring, because C is non-singular by definition
and [10, proposition II.1.1]. A function in RP may have a zero in P . The discrete
valuation measures the multiplicity of this zero. Any point P ∈ C corresponds
to a discrete valuation vP on k (C) by [4, corollary 7.1.4].

We are now ready to define the ramification index.

Definition 3.15. Let C and D be curves over k, φ : C → D be a surjective
morphism and P ∈ C be a point. The ramification index of φ at P is defined as

eφ (P ) = vP
(
φ∗
(
tφ(P )

))
where vP is the discrete valuation at P and tφ(P ) a uniformizer of the discrete
valuation ring at φ (P ). The morphism φ is ramified at P , if eφ (P ) > 1,
otherwise φ is unramified at P .

Remark that the ramification index is always larger or equal to one, because
if f ∈ Rφ(P ) has a zero in φ (P ) then φ∗f (P ) = f ◦ φ (P ) = 0. Thus the
homomorphism φ∗ restricts to an injective homomorphism Rφ(P ) → RP such
that mφ(P ) is mapped into mP .

The ramification index is restricted by the following two propositions.

Proposition 3.16. Let C and D be curves over k and φ : C → D be a surjective
morphism. For all points Q ∈ D∑

P∈φ−1(Q)

eφ (P ) = [k (C) : φ∗k (D)] .

Moreover if k (C) is a Galois extension of φ∗k (D), then for all P ∈ φ−1 (Q)

neφ (P ) = [k (C) : φ∗k (D)] ,

where n =
∣∣φ−1 (Q)

∣∣.
Proof. The first part is proven in [10, proposition II.2.6.a]. The second part is
proven in [13, corollary 3.7.2], where f (P ) = 1 since k is algebraically closed.

Proposition 3.17. Let C, D and E be curves over k. If φ : C → D and
λ : D → E are surjective morphisms, then for any point P ∈ C

eλ◦φ (P ) = eλ (φ (P )) eφ (P ) .

Proof. See [10, proposition II.2.6.c].

The Riemann-Hurwitz formula is a relation between the genus of two curves
and the ramification index of the morphism between those curves. It is given in
the proposition below.

Proposition 3.18. Let C and D be curves over k and φ : C → D be a surjective
morphism. If k (C) is a separable extension of φ∗k (D) and in the case that the
characteristic of k is positive it does not divide eφ (P ) for any point P ∈ C, then

2 (gC − 1) = 2 [k (C) : φ∗k (D)] (gD − 1) +
∑
P∈C

(eφ (P )− 1)

where gC and gD are the genus of C and D respectively.
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Proof. See [6, corollary IV.2.4] or [10, theorem II.5.9].

The following proposition relates the subgroup of deck transformations that
fix a particular point to the ramification index at that point via corollary 3.9.

Proposition 3.19. Let C and D be curves over k and φ : C → D be a surjective
morphism. If k (C) is a Galois extension of φ∗k (D), then for all points P ∈ C
the subgroup

{σ ∈ Deck (C/D) : σ (P ) = P}

is isomorphic to Gal
(
k (C)P /φ

∗k (D)Q

)
where Q = φ (P ).

Proof. Let G = Gal
(
k (C)P /φ

∗k (D)Q

)
. A deck transformation σ that fixes

a point P corresponds to a σ∗ ∈ Gal (k (C) /φ∗k (D)) such that σ∗ maps the
local ring at P to itself. In this case σ∗ extends to a unique element in G. The
proposition now follows from the fact that τ̂ (k (C)) ⊂ k (C) for all τ̂ ∈ G.

3.3 Elliptic curves

In this section we will give an overview of some concepts from the theory of
elliptic curves. For more background information see [10, 11, 12].

Let k be a perfect field of characteristic different from two and three. An
elliptic curve defined over k is a curve E defined over k of genus one with a
point O on E. The curve E is isomorphic to a non-singular curve given by the
so-called Weierstrass equation y2 = x3 + ax + b with a, b ∈ k. In this case O
corresponds to the point at infinity.

Proposition 3.20. The curve E : y2 = x3 + ax+ b with a, b ∈ k is irreducible.

Proof. Let F = Y 2 −X3 − aX − b ∈ k̄ [X,Y ]. The curve E is irreducible if and
only if (F ) is a prime ideal if and only if F is irreducible, because of Hilbert’s
Nullstellensatz and k̄ [X,Y ] is a unique factorization domain.

Consider F as in R [Y ] with R = k̄ [X]. Assume that X3 + aX + b does not
have a zero of multiplicity three, then X3 + aX + b has a zero x of multiplicity
one, so that F is an Eisenstein polynomial for X − x, thus F is irreducible.
On the other had if X3 + aX + b does have a zero of multiplicity three, then
F = Y 2 −X3, which is also irreducible since X3 is not a square in R.

We define two attributes of a curve given by a Weierstrass equation. The
first attribute is the discriminant ∆ = 4a3 + 27b2. The discriminant is non-zero
if and only if the curve is non-singular. The second attribute is the j-invariant

j = 1728 4a3

∆ .
Let E and E′ be elliptic curves defined over k with Weierstrass equations

y2 = x3 +ax+b and η2 = ξ3 +αξ+β respectively. If l is an extension of k, then
the elliptic curves E and E′ are isomorphic over l if and only if there exists a
u ∈ l∗ such that α = u4a and β = u6b. The isomorphism is given by the change
of coordinates ξ = u2x and η = u3y. Clearly the j-invariant does not change by
such a transformation, but the discriminants are related as ∆ (E′) = u12∆ (E).

An elliptic curve E is also a group and the point O is the unit element. If
E is defined over k, then the points on E over k form a subgroup E (k) of E.
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For a positive integer n, write the subgroup of E containing the points of order
dividing n as E [n].

Let P ∈ E [n] be any point different from O. In this case P = (x, y) for
some x, y ∈ k̄. For example we can consider an extension of k that contains
both coordinates. Denote the smallest field extension of k containing the x and
y coordinates of all points in E [n]−O by k (E [n]). Similar write k (E [n]x) for
the smallest field extension of k containing only the x-coordinates.

Proposition 3.21. Let E be an elliptic curve defined over k. If n ∈ Z≥2, then
k (E [n]) and k (E [n]x) are Galois extensions of k.

Proof. The proposition is proven in [12, section VI.2] for Q (E [n]), however the
adoption to k (E [n]) and k (E [n]x) is straightforward.

We can consider the Galois group of the extension k (E [n]) of k as a subgroup
of the special linear group over Z/nZ by the following proposition.

Proposition 3.22. Let E be an elliptic curve defined over k. If k contains a
n-th primitive root of unity with n ∈ Z≥2 prime to the characteristic of k, then
there exists an injective homomorphism ρn : Gal (k (E [n]) /k)→ SL2 (Z/nZ).

Proof. There is an action of Gal
(
k̄/k

)
on E

(
k̄
)

and it respects the group law
of the elliptic curve, because the curve is defined over k. In fact

nσ (P ) = σ (nP ) = σ (O) = O

for all σ ∈ Gal
(
k̄/k

)
and P ∈ E [n]. So Gal

(
k̄/k

)
acts on E [n]. Denote the

action by ρn : Gal
(
k̄/k

)
→ Aut (E [n]). Clearly Gal

(
k̄/k (E [n])

)
⊂ ker ρn. For

all σ ∈ ker ρn and P = (x, y) ∈ E [n]−O

(x, y) = ρn (σ) (x, y) = (σ (x) , σ (y)) ,

that is σ (x) = x and σ (y) = y, so that Gal
(
k̄/k (E [n])

)
⊃ ker ρn. Therefore

Gal
(
k̄/k (E [n])

)
is a normal subgroup of Gal

(
k̄/k

)
. Hence the action ρn induces

an injective homomorphism ρn : Gal (k (E [n]) /k)→ Aut (E [n]).
Let en : E [n] × E [n] → µn be the Weil-paring where µn is the group of

n-th roots of unity. It is a bilinear, alternating and Galois invariant map [10,
proposition III.8.1]. There exists points S, T ∈ E [n] with en (S, T ) a primitive
n-th root of unity [10, corollary III.8.1.1]. Assume that aS + bT = O for some
a, b ∈ Z≥0, then

en (S, T ) = en (S + aS + bT, T ) = en ((1 + a)S, T ) en (bT, T )

= en (S, T )
1+a

en (T, T )
b

= en (S, T )
1+a

and

en (S, T ) = en (S, T + aS + bT ) = en (S, aS) en (S, (1 + b)T )

= en (S, S)
a
en (S, T )

1+b
= en (S, T )

1+b
,

so that en (S, T )
a

= 1 and en (S, T )
b

= 1, that is n divides a and b. Thus the
subgroup generated by S, T contains at least n2 elements. In fact |E [n]| = n2

[10, corollary III.6.4]. Hence {S, T} is a basis of the Z/nZ-module E [n].
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Let σ ∈ Gal (k (E [n]) /k) and a, b, c, d ∈ Z such that σ (S) = aS + cT and
σ (T ) = bS + dT . Then

en (S, T ) = σ (en (S, T )) = en (σ (S) , σ (T )) = en (aS + cT, bS + dT )

= en (aS, bS) en (aS, dT ) en (cT, bS) en (cT, dT )

= en (S, S)
ab
en (S, T )

ad
en (T, S)

bc
en (T, T )

cd

= en (S, T )
ad
en (S, T )

−bc
= en (S, T )

ad−bc
,

where the first equality follows from µn ⊂ k. Thus en (S, T )
ad−bc−1

= 1, that
is ad− bc ≡ 1 mod n. Since the a, b, c, d are unique up to a multiple of n, this
means that the matrix representation of σ with respect to the basis {S, T} has
determinant one.

Hence the injective homomorphism ρn : Gal (k (E [n]) /k) → Aut (E [n])
combined with the matrix representation Aut (E [n]) → GL2 (Z/nZ) gives an
injective homomorphism Gal (k (E [n]) /k)→ SL2 (Z/nZ).

Let K be a perfect field of characteristic different from two and three with a
discrete valuation vK . Denote the discrete valuation ring by RK and the residue
field by kK . Write the canonical homomorphism as πK : RK → kK .

Proposition 3.23. The reduction map π : P2 (K)→ P2 (kK) defined as

(x0 : x1 : x2) 7→
(
πK
(
x0t
−nx

)
: πK

(
x1t
−nx

)
: πK

(
x2t
−nx

))
with nx = mini=0,1,2 vK (xi) and a fixed uniformizer t is well-defined.

Proof. The minimum nx ∈ Z, because xi 6= 0 for some i. The element xit
−nx ∈

RK for all i, since vK (xit
−nx) = vK (xi) − nx ≥ 0. In particular xit

−nx ∈ RK
is a unit for some i, because vK (xi) = nx for some i. Thus πK (xit

−nx) well-
defined for all i and non-zero for at least one i.

Let (y0 : y1 : y2) ∈ P2 (K) be another representation of (x0 : x1 : x2), that is
yi = cxi for all i and some non-zero c ∈ K. Let u ∈ RK be a unit such that
c = utnc with nc = vK (c), then ny = nx + nc so that

πK
(
yit
−ny

)
= πK

(
uxit

−ny+nc
)

= πK (u)πK
(
xit
−nx

)
with πK (u) ∈ kK again a unit independent of i. Hence the image of both
representations are also equivalent.

The map π : P2 (K)→ P2 (kK) is well-defined, because it is well-defined on
a representation of a point in P2 (K) and different representations of the same
point are mapped to the same point in P2 (kK).

Corollary 3.24. Let L be a finite extension of K. If vL is a discrete valuation
on L such that RK ⊂ RL and mK ⊂ mL, then the reduction map

π : P2
(
L̂
)
→ P2 (kL)

is Galois equivariant.
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Proof. Let tL be a uniformizer of R̂L. Take any automorphism σ ∈ Gal
(
L̂/K̂

)
.

It restricts to an automorphism of R̂L that fixes R̂K and it induces an auto-
morphism σ̃ : kL → kL that fixes kK . Moreover πL ◦ σ = σ̃ ◦ πL. In particular
σ (tL) = utL for some unit u ∈ R̂L. Therefore

πL

(
σ (xi) t

−nσ(x)
L

)
= πL

(
σ
(
xit
−nσ(x)
L

)
unσ(x)

)
= πL ◦ σ

(
xit
−nσ(x)
L

)
πL (u)

nσ(x)

= σ̃ ◦ πL
(
xit
−nσ(x)
L

)
πL (u)

nσ(x)

Notice that nx = nσ(x). Moreover πL (u) is a unit in kL independent of i. Thus

π ◦σ = σ̃π. Hence the reduction map is equivariant for all σ ∈ Gal
(
L̂/K̂

)
.

Let E be an elliptic curve defined over K. The discrete valuation on K allows
us to study the group E via another elliptic curve defined over the residue field
kK . Denote the Weierstrass equation of E by y2 = x3 + ax + b with a, b ∈ K.
This equation is called minimal if vK (a) ≥ 0 and vK (b) ≥ 0 with vK (∆)
minimal with respect to change of coordinates.

Definition 3.25. Let E be an elliptic curve defined over K with the minimal
Weierstrass equation y2 = x3 + ax+ b. The reduced curve of E is defined as

Ẽ : ỹ2 = x̃3 + ãx̃+ b̃,

where ã = πK (a) and b̃ = πK (b).

Earlier in this section we mentioned that a curve with a Weierstrass equation
is an elliptic curve if and only if the curve is non-singular. The reduced curve
of E is non-singular if and only if the discriminant of Ẽ is non-zero, but this is
the same as vK (∆ (E)) = 0. Therefore if the discriminant of E with minimal
Weierstrass equation is a unit in RK , then the reduced curve Ẽ is again an
elliptic curve.

Proposition 3.26. Let E be an elliptic curve defined over K. If both K and kK
have characteristic zero and the reduced curve Ẽ defined over kK is non-singular,
then the reduction map induces a group homomorphism π : E (K) → Ẽ (kK),
which if restricted to the torsion subgroup of E (K) is injective.

In the proof of this proposition we need the Nagell-Lutz theorem.

Lemma 3.27. Let the characteristic of K and kK be zero. If the elliptic curve
E : y2 = x3 + ax+ b with a, b ∈ RK is non-singular and P = (x, y) ∈ E (K) is
a point of finite order, then x, y ∈ RK and either y = 0 or 2vK (y) ≤ vK (∆).

Proof. This is a generalization of the theorem mentioned in [12, section II.5].

Proof of proposition 3.26. The reduction map induces a group homomorphism
by [10, proposition VII.2.1].

Let P ∈ E (K)tor be a point different from O. Then P = (x : y : 1) for some
x, y ∈ K. In fact x, y ∈ RK according to lemma 3.27. Since

min {vK (x) , vK (y) , vK (1)} = 0,

then π (P ) = (πK (x) : πK (y) : 1). Therefore π (P ) 6= O. Hence the only point
of finite order contained in the kernel of π is O.
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From now on we assume that K is complete with respect to the discrete
valuation vK . Let q ∈ mK be some non-zero element. We define the Tate curve
Eq as the elliptic curve y2 + xy = x3 + a (q)x+ b (q), where a (q) and b (q) are
certain series in qZ [[q]].

Proposition 3.28. Let Eq be the Tate curve. The curve is defined over K, has
j-invariant j (Eq) = 1

q + 744 + . . . and there exists a Galois invariant injective

homomorphism φ : K̄∗/qZ → Eq
(
K̄
)
.

Proof. See [11, theorem V.3.1].

The statement of the following corollary is mentioned in [11, remark V.6.2].

Corollary 3.29. The homomorphism φ : K̄∗/qZ → Eq
(
K̄
)

restricted to the

torsion subgroup is an isomorphism φtor :
(
K̄∗/qZ

)
tor
→ Eq

(
K̄
)

tor
.

Proof. Since the homomorphism φ is injective, then φtor is also injective.
Assume that P ∈ Eq

(
K̄
)

tor
is a point different from O. Denote the order of

P by n. Write the restriction of φtor to the subgroup of points of order dividing
n as φn. If the characteristic p of K is positive and divides n, then define n′

such that p does not divide n′ and n = n′pe with e a positive integer, otherwise
define n′ = n and take e zero. Let ω ∈ K̄ be a n′-th primitive root of unity and
x ∈ K̄ be a zero of the polynomial Xn − q ∈ K [X]. Suppose that ωixj ∈ qZ,
say ωixj = qm for some m ∈ Z. In this case

qj =
(
ωixj

)n
= qmn,

so that jvK (q) = mnvK (q). Therefore j = mn, because vK (q) > 0. So ωi = 1,
which can only be true if n′ divides i. Hence i ≡ 0 mod n′ and j ≡ 0 mod n.
Let yij be the image of ωixj in K̄∗/qZ. The elements yij have order dividing n

and there are n′
2
pe such elements. On the other hand the group Eq [n] contains

at most n′
2
pe points, because Eq [n′] and Eq [pe] contain n′

2
and pe points

respectively by [10, corollary III.6.4] and Eq [n] ∼= Eq [n′] × Eq [pe]. Thus φn is
not only injective, but also surjective. Hence there exists a y ∈ K̄∗/qZ of order
n such that φtor (y) = P . So φtor is also surjective.

Corollary 3.30. Let L be a Galois extension of K and x̄ ∈ K̄∗/qZ. Then

x̄ ∈ L∗/qZ ⇐⇒ φ (x̄) ∈ Eq (L) .

Proof. Suppose that x̄ ∈ L∗/qZ, then σ (x̄) = x̄ for all σ ∈ Gal
(
K̄/L

)
. The

homomorphism φ is Galois invariant. Therefore σ (φ (x̄)) = φ (σ (x̄)) = φ (x̄) for
all σ ∈ Gal

(
K̄/L

)
. Hence φ (x̄) ∈ Eq (L).

Assume that φ (x̄) ∈ Eq (L), then σ (φ (x̄)) = φ (x̄) for all σ ∈ Gal
(
K̄/L

)
. In

particular φ (σ (x̄)) = σ (φ (x̄)) = φ (x̄), because φ is Galois invariant. Moreover
σ (x̄) = x̄, since φ is injective. Hence x̄ ∈ L∗/qZ.

Let E be an elliptic curve with Weierstrass equation y2 = x3 + ax + b. To
this curve we assign an additional value, namely define γ (E) = − 1

18
a
b . It is

important for the following proposition.

Proposition 3.31. Let E be an elliptic curve defined over K. If the j-invariant
j (E) /∈ RK , then there exists a q ∈ mK such that j (Eq) = j (E). Moreover E
and Eq are isomorphic over K if and only if γ (E) is a square in K∗.
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Proof. See [11, theorem V.5.3].

We deduce from this proposition that the Tate curve provides an alternative
to the reduced curve as a way to study the points of finite order on an elliptic
curve. A combination of both methods will prove to be fruitful.

3.4 Galois theory of small field extensions

In this section we discuss the properties of field extension of degree two, three
and six. To prepare for the next section, we need to know when an extension of
degree six is Galois.

Proposition 3.32. Let k be a field of characteristic different from two. If l is
a degree two extension of k, then the extension is Galois.

Proof. Let x ∈ l \ k be any element and F ∈ k [X] its minimum polynomial.
The tower law of field extensions gives

[l : k (x)] [k (x) : k] = [l : k] = 2.

Thus [k (x) : k] = 2, because [k (x) : k] > 1 by assumption. So l = k (x) and
degF = 2. In fact l is a splitting field for F , because a degree one polynomial
remains after dividing out a factor X − x from F . Hence l is a finite normal
extension of k. Suppose that F is not separable, then the characteristic p of k
is positive and F is of the form [5, theorem 10.6]

F =

n∑
i=0

aiX
np.

This is impossible, because degF = 2 and p 6= 2. So F is separable. Hence l is a
finite, normal and separable extension of k, that is the extension is Galois.

Proposition 3.33. Let k be a field of characteristic different from three that
contains a primitive third root of unity. If F = X3 − c ∈ k [X] is irreducible,
then the splitting field for F is a Galois extension of degree three.

Proof. Denote the splitting field for F by l. By definition it is normal. Suppose
that F is not separable, then the characteristic p of k is positive and F is of the
form [5, theorem 10.6]

F =

n∑
i=0

aiX
np,

but np = 3 and p 6= 3. So F is separable. Therefore l is also separable. Hence l
is a Galois extension of k.

The degree of the extension l of k is three, because [l : k] ≥ degF = 3 and
for x ∈ l a zero of F

F = (X − x) (X − ωx)
(
X − ω2x

)
where ω ∈ k is a primitive third root of unity.
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Proposition 3.34. Let k be a field of characteristic different from two and three
that contains a primitive third root of unity, l be a field extension of k of degree
two and m be the splitting field for an irreducible polynomial F = X3−c ∈ l [X].
If m is not a Galois extension of k, then c /∈ k and Y 3 − G (0) is irreducible
over l where G is the minimum polynomial of c.

We need the following lemma to prove the proposition.

Lemma 3.35. Let k be a field. If l1 and l2 are normal extensions of k, then
the smallest field m containing both l1 and l2 is also a normal extension of k.

Proof. For i = 1, 2 there exists subsets Si ⊂ k [X] such that li is a splitting field
for Si by [5, theorem 9.1]. Define S = S1 ∪ S2.

Let f ∈ S. So f ∈ Si for some i. Therefore f splits over li, which is a
subfield of m. Hence every f ∈ S splits over m. Let m′ be the splitting field for
S. Recall that li is a splitting field for Si and that every f ∈ Si also splits over
m′. Therefore li ⊂ m′. Since m is the smallest field containing both l1 and l2,
it follows that m = m′. Therefore m is the splitting field of S. Hence m is a
normal extension of k by [5, theorem 9.1].

Proof of proposition 3.35. The extension m of l is Galois by proposition 3.33
and the extension l of k is Galois by proposition 3.32. So the extension m of k
is separable [5, theorem 10.3].

Suppose that c ∈ k, then F ∈ k [X] and F is also irreducible over k. Define
the splitting field for F over k by l′. This extension is Galois of degree three
by proposition 3.33. The following diagram shows the extensions with their
degrees.

l

3
??������

m

k
2

__?????? 3

??������

l′

__??????

The field m is the smallest field that contains both l and l′ as follows from the
tower law. In particular both l and l′ are normal extensions of k. Thus m is
also a normal extension of k by lemma 3.35. So m is a Galois extension of k.

Suppose that c /∈ k and that Y 3 − G (0) is reducible over l, where G is the
minimum polynomial of c. Let d ∈ m be a zero of F . Notice that l = k (c) and
m = k (d). Denote the minimum polynomial of d over k by F ′ ∈ k [X], then
degF ′ = [m : k] = 6. Recall that F is the minimum polynomial of d over l, so
that F ′ = FH for some monic polynomial H ∈ l [X] of degree three. Since l is
a Galois extension of k, then Gal (l/k) = {id, σ}. The automorphism σ : l → l
extends an automorphism of l [X]. Moreover l [X] is a unique factorization
domain, F is irreducible over l and

FH = F ′ = σ (F ′) = σ (FH) = σ (F )σ (H) .

Therefore σ (F ) = H, because σ (c) 6= c. Notice that G = (X − c) (X − σ (c)).
So cσ (c) = G (0). There is an y ∈ l such that y3 = G (0) by assumption. Now

H = X3 − σ (c) = X3 − y3

d3
=
(
X − y

d

)(
X − ωy

d

)(
X − ω2 y

d

)
,
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where ω ∈ k is a primitive third root of unity. Thus F and H split over m, so
that F ′ splits over m. Furthermore [m : k] = degF ′. Hence m is the splitting
field of F ′, that the extension m of k is normal. In particular it is Galois.

3.5 Branched covering space of an elliptic curve

Recall that in proposition 2.26 we proved that there exists a branched covering
space of an elliptic curve with three sheets and a single ramification point using
the theory of algebraic topology and Riemann surfaces. The theory in this
chapter allows us to give an explicit example of this case.

Let k be an algebraically closed field of characteristic different from two and
three. Let E and E′ be elliptic curves over k. Suppose that φ : E′ → E is
an isogeny of degree two. From proposition 3.32 we deduce that the extension
induced by φ is separable and the following lemma tells us that there exists a
point T ′ of order two in the kernel of φ.

Lemma 3.36. The extension induced by φ is separable if and only if there exists
a point T ′ ∈ E′ (k) ∈ kerφ of order two.

Proof. Suppose that the extension is separable, then∣∣kerφ−1
∣∣ = degs φ = deg φ = 2

where the first equality follows from [10, theorem III.4.10]. So there exists a
point S′ ∈ E′ (k) different from O′. It has order two, otherwise 2S′ is yet
another point in kerφ which implies that

∣∣kerφ−1
∣∣ > 2. Therefore T ′ exists.

Suppose that T ′ exists, then

deg φ = 2 ≤
∣∣kerφ−1

∣∣ = degs φ ≤ deg φ

where the third relation again follows from [10, theorem III.4.10]. Therefore
degs φ = deg φ, that is φ induces a separable extension.

Let D′ = 2T ′ − 2O′ be a divisor on E′ of degree zero. In particular

2T ′ = O′ = 2O′

in the group E′ (k). Therefore D′ is a principal divisor by [10, corollary III.3.5],
that is D′ = div f for some f ∈ k (E′)

∗
. Define F = X3 − f ∈ k (E′) [X], which

is irreducible by the following lemma.

Lemma 3.37. The polynomial F = X3 − f is irreducible over k (E′).

Proof. Assume that F is reducible, then F has a zero g, that is g3 = f . So

2T̃ − 2Õ = div f = 3 div g,

however three does not divide two. Hence F is irreducible.

Define the curve C over k such that k (C) is the splitting field of F over k (E′).
Denote the morphism corresponding to the inclusion of fields by χ : C → E′.
Proposition 3.33 implies that k (C) is a degree three Galois extension of k (E′).
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Proposition 3.38. Let P ∈ C be a point. The morphism χ : C → E′ is
ramified at P if and only if χ (P ) ∈ {O′, T ′}. Moreover the ramification index
at P is three, if the morphism χ is ramified at P .

Proof. Let P ∈ C be a point such that χ (P ) = T ′. Let tT ′ be a uniformizer of
the discrete valuation ring at T ′. Then

3vP (g) = vP
(
g3
)

= vP (f) = 2vP (tT ′) ,

where the last equality follows from vT ′ (f) = 2. Thus three divides vP (tT ′), so
vP (tT ′) ≥ 3. In fact vP (tT ′) = 3, because

vP (tT ′) ≤
∑

Q∈χ−1(T ′)

vQ (tT ′) = degχ = [k (C) : k (E′)] = 3

by [10, proposition II.2.6]. Thus χ−1 (T ′) = {P}. From the same argument
also follows that χ−1 (O′) = {P ′} and vP ′ (tO′) = 3 for tO′ a uniformizer of the
discrete valuation ring at O′. Hence if χ (P ) ∈ {O′, T ′}, then χ is ramified at P
with ramification index three.

Let P ∈ C be a point such that χ (P ) = Q /∈ {O′, T ′}. Denote the discrete
valuation ring at Q by RQ and consider the completion R̂Q thereof. Recall that
k (C) is the splitting field of F = X3−f over k (E′) and that div f = 2T ′−2O′.
Thus dF

dX = 3X2 and vQ (f) = 0. Let g0 ∈ RQ be the constant function such that
g0 (Q) is a third root of f (Q) in k. In particular g0 (Q) 6= 0, since f (Q) 6= 0.
From Hensel’s lemma follows that there exists a g ∈ R̂Q such that F (g) = 0.

Thus k (C) ⊂ k̂ (E′)Q, because k (C) = k (E′) (g). The morphism χ induces an
inclusion from RQ to the discrete valuation ring RP at P . From proposition 3.5
follows that vP (tQ) = 1, where tQ is a uniformizer of RQ. Hence χ is unramified
at P .

In the proposition we proved that the morphism χ : C → E′ is ramified
at two points. Denote these points by T ′′ and O′′ such that χ (T ′′) = T ′ and
χ (O′′) = O′.

We compose the morphism χ : C → E′ with the morphism φ : E′ → E to
obtain a morphism ψ : C → E. The morphism φ is unramified, because k (E′)
is a separable extension of k (E) and [10, theorem III.4.10]. The ramification
index of ψ at a point P ∈ C is fixed by

eψ (P ) = eχ (P ) eφ (χ (P )) .

Hence ψ is ramified in T ′′ and O′′ with index three. At all other points on C
the morphism ψ is unramified.

Proposition 3.39. The curve C has genus three.

Proof. The genus of an elliptic curve is one, that is gE = 1. According to the
Hurwitz formula

2 (gC − 1) = 2 degψ (gE − 1) +
∑
P∈C

(eψ (P )− 1) .

Since ψ only ramifies at two points on C and the ramification index at these
points is three, then the genus of C satisfies 2 (gC − 1) = 4. Hence gE = 3.
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We choose the elliptic curve E′ and E and the isogeny φ : E′ → E as in [10,
example III.4.5]. Let k be an algebraically closed field of characteristic different
from two and three. Define the elliptic curve E′ : η2 = ξ3 +aξ2 + bξ over k with
a, b ∈ k such that b 6= 0 and a2 6= 4b. Let E : y2 = x3 − 2ax2 +

(
a2 − 4b

)
x be

another elliptic curve over k. In this case the isogeny of degree two φ : E′ → E
is defined as

(ξ, η) 7−→

(
η2

ξ2
,
η
(
b− ξ2

)
ξ2

)
.

The point T ′ = (0, 0) on E′ has order two and lies in the kernel of φ.

Lemma 3.40. The coordinate function ξ ∈ k (E′) has divisor D′ = 2T ′ − 2O′.

Proof. Let P ∈ E′ be any point not equal to O′ such that ξ (P ) = 0. In fact
P = T ′, because η (P ) = 0 as follows from the equation of E′. Notice that T ′ is
a simple point of E′ and the line η = 0 is not parallel to the tangent line ξ = 0
of E′ in T ′. Therefore is η a uniformizer in the point T ′ by [4, theorem 3.1].
From

(
ξ2 + aξ + b

)
(T ′) = b 6= 0 and

ξ =
ξ3 + aξ2 + bξ

ξ2 + aξ + b
=

η2

ξ2 + aξ + b

follows that vT ′ (ξ) = 2. Moreover O′ is the only point at infinity and a principal
divisor has degree zero by [4, proposition 8.1]. Hence div ξ = 2T ′ − 2O′.

Recall that we defined the curve C such that the function field k (C) is the
splitting field of F = X3 − f over k (E′). In particular f is any function such
that div f = D′. By the previous lemma we may as well take f = ξ. Let s be a
zero of F , that is s3 = ξ. Define t = η

s .

Lemma 3.41. The function field of the curve C is equal to k (s, t).

Proof. The function field of E′ is equal to k (ξ, η) by [10, corollary III.3.1.1].
The function field of C is defined as the splitting field of F over k (E′), which
is k (E′) (s) by proposition 3.33. Hence k (C) = k (ξ, η, s) = k (s, t).

We derive the equation for the curve C from the curve E as follows

t2 =
η2

s2
=
ξ3 + aξ2 + bξ

s2
=
s9 + as6 + bs3

s2
= s7 + as4 + bs.

The morphism χ : C → E′ is given by (s, t) 7→
(
s3, st

)
.

Proposition 3.42. The extension k (C) of k (E) is Galois. Moreover the Galois
group is isomorphic to S3.

Proof. The minimum polynomial of ξ is G = X2 + (a− x)X + b, because

x =
η2

ξ2
=
ξ3 + aξ2 + bξ

ξ2
=
ξ2 + aξ + b

ξ

and ξ /∈ k (E) since otherwise k (E) = k (E′). From proposition 3.34 follows
that k (C) is a Galois extension of k (E), because G (0) = b ∈ k and that k is
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algebraically closed. In fact k (C) is the splitting field of F ′ = X6+(a− x)X3+b
over k (E), since

F = (X − s) (X − ωs)
(
X − ω2s

) (
X − c

s

)(
X − ω c

s

)(
X − ω2 c

s

)
where ω ∈ k is a primitive third root of unity and c ∈ k is a cubic root of b.
There exist σ, τ ∈ Gal (k (C) /k (E)) such that σ (s) = ωs and τ (s) = c

s . These
elements generate a subgroup of order at least six, but the Galois group has order
six. Therefore σ and τ generate Gal (k (C) /k (E)). Moreover this group is non-
abelian, since σ ◦ τ (s) = ω2 c

s 6= ω cs = τ ◦ σ (s). So Gal (k (C) /k (E)) ∼= S3.

Let H be the subgroup of Gal (k (C) /k (E)) generated by τ and D be the

curve over k such that the function field is k (C)
H

. Since y =
η(b−ξ2)

ξ2 , then

τ (t) = σ
(η
s

)
= y

b2

ξ2

b− b2

ξ2

s

c
= −y b

b− ξ2

s

c
= − bη

cs5
= −c

2t

s4
,

because τ (s) = c
s and ξ = s3. Define α = s + c

s and β = t
s2

(
s− c

s

)
. Clearly

α is invariant under τ , that is α ∈ k (D). Also β ∈ k (D), because t
(

1− c2

s4

)
is invariant under τ and β = t

α

(
1− c2

s4

)
. Let λ : C → D be the morphism

corresponding to the inclusion of k (D) in k (C).

Lemma 3.43. The function field of the curve D is equal to k (α, β).

Proof. Recall that α, β ∈ k (D). So k (α, β) is a subfield of k (D). The element
s is a zero of X2 − αX + c, because α = s+ c

s implies s2 − αs+ c = 0. Assume

that this polynomial is reducible, then s ∈ k (α, β) and also t = βs2

s− cs
∈ k (α, β),

that is k (α, β) = k (D) = k (C), which contradicts that k (C) is a degree two
extension of k (D). Therefore X2−αX+c is the minimum polynomial of s over
k (α, β). From the tower law now follows

[k (D) : k (α, β)] =
[k (C) : k (α, β)]

[k (C) : k (D)]
=

2

2
= 1.

Hence k (D) = k (α, β).

We derive the equation for the curve D from the curve C like before

β2 =
t2

s4

(
s− c

s

)2

=

(
s3 + a+

b

s3

)(
s2 − 2c+

c2

s2

)
=
(
α3 − 3cα+ a

) (
α2 − 4c

)
.

In a similar way we describe the inclusion of k (E) in k (D).

x =
η2

ξ2
=
t2

s4
= s3 + a+

b

s3
= α3 − 3cα+ a

y =
η

ξ2

(
b− ξ2

)
= − t

s2

(
s− c

s

)(
s2 + c+

c2

s2

)
= −β

(
α2 − c

)
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Therefore define the corresponding morphism ρ : D → E as

(α, β) 7→
(
α3 − 3cα+ a,−β

(
α2 − c

))
.

Proposition 3.44. The curve D is irreducible over k.

Proof. Let G = Y 2 −
(
X3 − 3cX + a

) (
X2 − 4c

)
∈ k [X,Y ]. If G is irreducible,

then (G) is a prime ideal, because k [X,Y ] is a unique factorization domain.
Moreover D is then irreducible by Hilbert’s Nullstellensatz.

The zeros of X3 − 3cX + a are all different, because the discriminant is
4 (−3c)

3
+ 27a2 = 27

(
a2 − 4b

)
and a2 6= 4b by definition. Also the zeros of

X2 − 4c are different, because c 6= 0. Suppose that the two polynomials have a
zero in common. Denote this zero by x. Since

X3 − 3cX + a = X
(
X2 − 4c

)
+ cX + a,

then cx+ a = 0. Together with x2 = 4c this gives a2 = c2x2 = 4c3 = 4b, which
contradicts that a2 6= 4b. Hence all the zeros of

(
X3 − 3cX + a

) (
X2 − 4c

)
are

different.
Consider k [X,Y ] as R [Y ] with R = k [X]. Let x be a zero of X2 − 4c, then

X − x is prime in R. Furthermore X − x divides
(
X3 − 3cX + a

) (
X2 − 4c

)
only once. Thus G is an Eisenstein polynomial. Hence G is irreducible.

The curve D has a unique point at infinity. Denote this point by ∞.

Lemma 3.45. The coordinate function α, β ∈ k (D) have divisors

divα =
(
0, 2
√
−ac

)
+
(
0,−2

√
−ac

)
− 2∞

div β = (α1, 0) + . . .+ (α5, 0)− 5∞

where the αi’s are the zeros of G =
(
X3 − 3cX + a

) (
X2 − 4c

)
in k.

Proof. Let P ∈ D be any point different from infinity. The line tangent to D in
P is given by − dG

dX (α (P )) (X − α (P )) + 2β (P ) (Y − β (P )). Recall from the
proof of proposition 3.44 that G does not have double zeros. So if α (P ) is zero,
then dG

dX (α (P )) is non-zero.

Suppose that α (P ) = 0, then β (P )
2

= −4ac. In this case the line X through
P is not tangent to D. Thus α is a uniformizer at P by [4, theorem 3.1]. So
vP (α) = 1. A principal divisor has degree zero. Hence divα is as claimed.

Assume that β (P ) = 0, then α (P ) is zero of G. Now the line Y through P
is not tangent to D. Therefore β is a uniformizer at P . So vP (β) = 1. Hence
div β is also as claimed.

Lemma 3.46. The coordinate function x, y ∈ k (E) have divisors

div x = 2 (0, 0)− 2O

div y = (0, 0) +
(
a+ 2

√
b, 0
)

+
(
a− 2

√
b, 0
)
− 3O.

Proof. The proof is similar to the proofs of lemmas 3.40 and 3.45.

Proposition 3.47. The curve D has genus two. The morphism ρ branches
only at infinity, where the ramification index is three.
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Proof. The ramification index of a point P ∈ D is defined as eρ (P ) = vP (r),
where r is a uniformizer of the discrete valuation ring at ρ (P ) on E. From
lemma 3.46 follows that x

y is a uniformizer at O = ρ (∞). Now

x

y
= −α

3 − 3cα+ a

β (α2 − c)
= −α

β

1− 3c
α2 + a

α2

1− c
α2

.

The factors 1− 3c
α2 + a

α2 and 1− c
α2 evaluate to one at ∞ by lemma 3.45. So

eρ (∞) = v∞

(
x

y

)
= v∞

(
α

β

)
= v∞ (α)− v∞ (β) = −2 + 5 = 3.

Hence the ramification index of ρ at ∞ is three.
The curve C has genus three by proposition 3.39. First apply the Hurwitz

formula to the morphism λ : C → D. Then

4 = 2 (gC − 1) = 2 deg λ (gD − 1) +
∑
P∈C

(eλ (P )− 1) ≥ 4 (gD − 1) ,

where deg λ = [k (C) : k (D)] = 2 by construction of D. Last apply the Hurwitz
formula to the morphism ρ : D → E. Then

2 (gD − 1) = 2 deg ρ (gE − 1) +
∑
P∈D

(eρ (P )− 1) =
∑
P∈D

(eρ (P )− 1) ≥ 2,

where the inequality follows eρ (∞) = 3. Combine the two relations to obtain
1 ≥ gD − 1 ≥ 1, that is gD = 2. Moreover

∑
P∈D (eρ (P )− 1) = eρ (∞) − 1,

that is eρ (P ) = 1 for all P 6=∞.
Hence the curve D has genus two. The morphism ρ : D → E is unramified

at all points except infinity. At infinity the ramification index is three.



Chapter 4

Branched covering space of
a discriminant

Let k be an algebraically closed field of characteristic zero. We will construct
branched covering spaces of some elliptic curve C, but first we will derive some
properties of this curve.

We define the elliptic curve C : 4a3 + 27b2 = 1 over k. The curve C is
irreducible, because of proposition 3.20, so the function field K = k (C) is well-
defined. Moreover this curve is non-singular, thus for all points P ∈ C there is
a discrete valuation vP on K. The zeros and poles of the coordinate functions
a, b ∈ K are given by the following lemma.

Lemma 4.1. Let a, b ∈ K be the coordinate functions of C. Then

div a =

(
0,

1

9

√
3

)
+

(
0,−1

9

√
3

)
− 2OC

div b =

(
1

2
3
√

2, 0

)
+

(
1

2
3
√

2ζ, 0

)
+

(
1

2
3
√

2ζ2, 0

)
− 3OC ,

where ζ2 + ζ + 1 = 0.

Proof. Let P ∈ C be a point such that P 6= OC . If P = (aP , bP ), then aP =
a (P ) and bP = b (P ). If aP 6= 0, then vP (a) = 0 by definition of the local ring
at P . If bP 6= 0, then vP (b) = 0.

Suppose that aP = 0, then bP is a root of b2P = 1
27 . Moreover a − aP = a

is a uniformizer, because of [4, theorem 3.1] and bP 6= 0. Hence vP (a) = 1 for
P =

(
0,± 1

9

√
3
)
.

Assume that bP = 0, then aP is a root of a3
P = 1

4 . Thus b − bP = b is a

uniformizer, because aP 6= 0. Hence vP (b) = 1 for P =
(

1
2

3
√

2ζn, 0
)

with ζ3 = 1.
The point OC ∈ C is the only point at infinity. The div f has degree zero

for all f ∈ K∗, because of [4, proposition 8.1]. Therefore a and b have a pole of
order two and three respectively at infinity.

We define another curve E : y2 = x3 + ax + b with a, b ∈ K the coordinate
functions of C. The curve C is defined such that the discriminant of E is one.
Therefore E is an elliptic curve.

37
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A finite field extension L of K corresponds to a curve D over k by proposi-
tion 3.11. The inclusion of K into L induces a surjective morphism ψ : D → C.
Now D is a branched covering space of C by definition. In the following sections
we analyse several spaces of this type.

4.1 Adjoin both x and y coordinates for all points

Let m ∈ Z≥2 and define Lm = K (E [m]). This is an Galois extension of K by
proposition 3.21. Denote the curve corresponding to Lm by Dm. The inclusion
of K into Lm gives the surjective morphism ψm : Dm → C.

Proposition 4.2. If P ∈ Dm with ψm (P ) 6= OC , then ψm is unramified at P .

Proof. Let Q = ψm (P ) be the image of P on C. Denote the local ring of Dm

at P by Rm,P and the local ring of C at Q by RQ. The morphism ψm induces
an inclusion RQ ⊂ Rm,P of local rings, such that mQ ⊂ mm,P . Corollary 3.9

implies that L̂m,P /K̂Q is Galois with Galois group Z/nZ for some n, where

L̂m,P and K̂Q are the quotient fields of the completed rings R̂m,P and R̂Q. The
ramification index of ψm at P is n = vP (tQ) for a uniformizer tQ of RQ.

The coordinate functions a, b ∈ K are contained in RQ by lemma 4.1 and
the discriminant ∆ (E) = 1. So the Weierstrass equation of E is minimal. The
reduced curve Ẽ is well-defined and non-singular. Moreover the reduction map

π : E
(
L̂m,P

)
→ Ẽ (k)

is a group homomorphism by proposition 3.26. The coordinates of all points
in E [m] are contained in Lm. So E [m] is a subgroup of E (Lm). Hence the
reduction map restricts to an isomorphism π : E [m] → Ẽ [m]. This map is

Galois equivariant by corollary 3.24. Let σ ∈ Gal
(
L̂m,P /K̂Q

)
. Then

π ◦ σ (R) = σ̃ ◦ π (R) = π (R)

for all R ∈ E [m], because k algebraically closed implies σ̃ = idk. Therefore
σ (R) = R. So σ fixes the coordinates of all R ∈ E [m]. Hence σ is the identity
on L̂m,P . Thus n = 1, that is ψm is unramified at P .

Proposition 4.3. The morphism ψ2 : D2 → C does not branch above OC .

Proof. Let P ∈ D2 be such that ψ2 (P ) = OC . Denote the local ring of D2 at P
by R2,P and the local ring of C at OC by ROC . The inclusion ROC ⊂ R2,P of
local rings such that mOC ⊂ m2,P is induced by the morphism ψ2. The three
points of order two have x-coordinates that are the roots of x3 +ax+ b = 0 and
y-coordinates zero. Assume that the roots of this equation are x1, x2, x3 ∈ K̂OC ,
then L2 = K (x1, x2, x3) ⊂ K̂OC . Proposition 3.5 implies that K̂OC = L̂2,P . So
a uniformizer tOC ∈ ROC is also a uniformizer of R2,P . Hence ψ2 is unramified
at P .

It remains to show that the roots xi are elements in K̂OC . Lemma 4.1 implies
that t = a

b is a uniformizer at OC . Moreover u = bt3 is a unit in ROC . In fact
the equation 4a3 + 27b2 = 1 now implies

t6 = 4
(
at2
)3

+ 27
(
bt3
)2

= 4u3 + 27u2 = u2 (4u+ 27) .
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Define ξ = t−1x. Then x3 + ax + b = 0 is equivalent to ξ3 + uξ + u = 0. The
main tool is to inductively compute the root of a polynomial over R̂OC/t

n for
n = 0, 1, 2, . . . up to some finite number such that Hensel’s lemma may be used.
This procedure and that u is a unit gives u ≡ − 27

4 + 4
729 t

6 mod t12. Let F =

X3 + uX + u, then dF
dX = 3X2 + u. If ξ′ = 3− 64

59049 t
6, then F (ξ′) ≡ 0 mod t12

and dF
dX (ξ′) ≡ 81

4 mod t, so Hensel’s lemma implies there exists a ξ ∈ R̂OC such
that F (ξ) = 0 and ξ ≡ ξ′ mod t12. Hence F = (X − ξ)

(
X2 + ξX + u+ ξ2

)
.

The latter factor has discriminant

∆ = ∆
(
X2 + ξX + u+ ξ2

)
= −3ξ2 − 4u ≡ − 16

6561
t6 mod t12.

Let G = Y 2 − ∆t−6, then η′ = i 4
81 gives G (η′) ≡ 0 mod t6 and dG

dY ≡ i 8
81

mod t. Thus there is an η ∈ R̂OC such that G (η) = 0 and η ≡ η′ mod t6. Hence

F = (X − ξ)
(
X + ξ+ηt3

2

)(
X + ξ−ηt3

2

)
with each of the roots in K̂OC .

We know from proposition 4.2 that ψ2 does not branch above any point on C
different from OC . The previous proposition says that ψ2 also does not branch
above OC . According to proposition 3.18 the genus of D2 must be one. Hence
D2 is an elliptic curve and the morphism ψ2 : D2 → C is unramified.

Proposition 4.4. If P ∈ D3 such that ψ3 (P ) = OC , then ψ3 is ramified at P
with ramification index two.

Proof. Given the local ring R3,P of D3 at P and the local ring ROC of C at OC
there exists an inclusion ROC ⊂ R3,P of local rings such that mOC ⊂ m3,P is
induced by the morphism ψ3. The element t = a

b is a uniformizer at OC and
b = ut−3 for some unit u ∈ ROC such that t6 = u2 (4u+ 27). The x-coordinates
of points of order three satisfy the following equation 0 = 3x4 +6ax2 +12bx−a2

from [12, §II.1], which changes into 0 = ξ4 + 2uξ2 + 4uξ − 1
3u

2 for ξ = tx.
Let L be the splitting field for F = X4 + 2uX2 + 4uX − 1

3u
2 ∈ K [X]. In

fact L = K (α1, α2, α3) with α2
i the three roots of the cubic resolvent [5, §14.4]

G =
(
X − α2

1

) (
X − α2

2

) (
X − α2

3

)
= X3 + 4uX2 +

16

3
u2X − 16u2

such that α1α2α3 = −4u. Lets introduce a new variable Y = X + 4
3u and write

G in terms of Y . This reveals that

G = Y 3 − 64

27
u3 − 16u2 = Y 3 − 16

27
t6,

therefore α2
i = − 4

3u+ 2 3√2
3 t2ωi with ω2 + ω+ 1 = 0. Moreover α2

i ∈ R∗OC , since

vOC
(
− 4

3u
)

= 0 and vOC

(
2 3√2

3 t2ωi
)

= 2. Thus αi ∈ R̂OC such that αi ≡ 3

mod t by Hensel’s lemma, so L ⊂ K̂OC . The roots ξi of F are units in R̂OC ,
because αi ∈ R̂OC ,

ξ1 =
1

2
(+α1 + α2 + α3)

ξ2 =
1

2
(+α1 − α2 − α3)

ξ3 =
1

2
(−α1 + α2 − α3)

ξ4 =
1

2
(−α1 − α2 + α3)
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and ξ1 ≡ 9
2 mod t4, ξi ≡ − 3

2 +
3√2
9 ωi−2t2 mod t4 for i = 2, 3, 4.

The y-coordinates are solutions of the equation y2 = x3 + ax + b, which
changes into η2 = t

(
ξ3 + uξ + u

)
for η = t2y. The element ξ3

i + uξi + u ∈ R̂OC
is a unit for i = 1 and is of fourth order for i = 2, 3, 4, because ξ3 + uξ + u ≡
(ξ − 3)

(
ξ + 3

2

)2
mod t6. Define Hi = Y 2 − t

(
ξ3
i + uξi + u

)
. It is irreducible

over K̂OC , otherwise it has a root ηi ∈ K̂OC and

0 ≡ v
(
η2
i

)
≡ v

(
t
(
ξ3
i + uξi + u

))
≡ 1 mod 2.

From corollary 3.9 follows that there exists a uniformizer t3,P ∈ R̂3,P and

an integer n ∈ Z>0 such that tn3,P = t. In fact n > 1 since L3 6⊂ K̂OC . Thus
ψ3 is ramified at P . Moreover n is even, otherwise let m ∈ Z be such that
n = 2m + 1, then Z2 − t3,P

(
ξ3
i + uξi + u

)
with Y = tm3,PZ is again irreducible

which contradicts that the y-coordinates are part of L3. Let m ∈ Z be such that
n = 2m. Proposition 3.6 implies that R̂OC = k [[t]] and R̂3,P = k [[t3,P ]]. Define

RM = k [[s]], then R̂OC ⊂ RM ⊂ R̂3,P and m̂OC ⊂ mM ⊂ m̂3,P via t 7→ s2 and
s 7→ tm3,P . Now the polynomial Y 2 − ξ3

1 − uξ1 − u does have a solution η̃1 ∈ RM
by Hensel’s lemma and η1 = sη̃1 is a root of H1. Similar for i = 2, 3, 4 the
polynomial Y 2 − t−4

(
ξ3
i − uξi − u

)
has a root η̃i ∈ L̂ and ηi = s5η̃i is a root of

Hi. Thus L3 ⊂ M with M the quotient field of RM . An argument similar to
proposition 3.5 gives m = 1, because m ≥ 1 and

1 = v3,P

(
t′3,P

)
= v3,P (u) + vM

(
t′3,P

)
v3,P (s) = vM

(
t′3,P

)
m

with t′3,P ∈ R3,P a uniformizer and u ∈ RM a unit such that t′3,P = usvM(t′3,P ).
Hence the ramification index is n = 2.

The morphism ψ3 does not branch above any point on C different from OC
by proposition 4.2. The previous proposition implies that ψ3 does branch above
OC . Hence D3 is a branched covering space of the elliptic curve C that branches
only above a single point.

We can derive an additional result from the proof of proposition 4.4. Define
L3,x = K (E [3]x). Let D3,x be the curve over k corresponding to L3,x. Write the
surjective morphism induced by the inclusion of K into L3,x as ψ3,x : D3,x → C.

Since L3,x ⊂ K̂OC as is shown in the proof above, then ψ3,x is unbranched above
OC by proposition 3.5. In section 4.2 we continue studying curves like D3,x.

Proposition 4.5. Let m ∈ Z>3 be an integer and p ∈ Z>3 a prime factor of
m. If P ∈ Dm is a point such that ψm (P ) = OC , then ψm is ramified at P with
ramification index divisible by p.

Proof. Let Rm,P be the local ring of Dm at P and ROC the local ring of C
at OC . The morphism ψm induces an inclusion of ROC in Rm,P such that the
maximal ideal mOC is contained in mm,P . Let tOC = a

b be a uniformizer of ROC ,

then a = ut−2
OC

and b = ut−3
OC

for some unit u ∈ ROC . Denote the completion of

K at OC by K̂OC and the completion of Lm at P by L̂m,P .
Recall that the elliptic curve E has j-invariant

j (E) = 1728
4a3

∆ (E)
= 1728 · 4u3t−6

OC
.
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Therefore there exists a q ∈ m̂OC such that the Tate curve Eq has j-invariant
j (Eq) = j (E) by proposition 3.31. However E is not isomorphic to Eq over

K̂OC , because

γ (E) = − a

18b
= − 1

18
tOC

is not a square in K̂∗OC . Define M̂ = L̂m,P (
√
tOC ), then E is isomorphic to

Eq over M̂ , because tOC is a square in M̂ and the residue field is algebraically
closed of characteristic zero. Let n′ = vP (tOC ) be the ramification index at P
and n = vM (tOC ). If

√
tOC ∈ L̂m,P , then n = n′, otherwise n = 2n′.

There is an injective homomorphism E (Lm,P ) → E
(
M̂
)

, because Lm,P is

a subfield of M̂ . The elliptic curves E and Eq are isomorphic over M̂ . So there

is an isomorphism E
(
M̂
)
→ Eq

(
M̂
)

. Therefore Eq

(
M̂
)

contains all points of

order dividing m, because E (Lm,P ) contains all m2 such points. Hence M̂∗/qZ

also contains all points of order dividing m by corollaries 3.29 and 3.30.
Let tM ∈ R̂M be a uniformizer such that q = t6nM . Suppose that x̄ ∈ M̂∗/qZ

is an element of order m. Define ȳ = x̄
m
p , then ȳ has order p. Let y ∈ M̂∗ be a

representative of ȳ, then yp ∈ qZ, that is yp = qr for some r ∈ Z. Assume that
0 ≤ r < p, otherwise there are s, r′ ∈ Z such that r = sp+ r′ and 0 ≤ r′ < p by
division with remainder, so that y′ = y

qs is another representative of ȳ for which

y′
p

= qr
′
. If r > 0, then p is a divisor of n, because p > 3 is prime, r < p and

pvM (y) = vM (yp) = vM (qr) = 6nr.

Assume that r = 0, then y is a p-th root of unity. However there are p2 points
of order p in x̄ ∈ M̂∗/qZ and only p roots of unity. Thus r > 0.

Hence p is a divisor of n, that is p is a divisor of the ramification index n′.
In particular n′ > 1, so that the morphism ψm is ramified at P .

From proposition 4.2 we know that the morphism ψm is unbranched above
any point on C different from OC . If a prime number larger than three divides
m, then ψm does branch above OC . Hence in this case Dm is a branched covering
space of the elliptic curve C that branches only above a single point.

In general the precise value of the ramification index of ψm above OC is
unknown. However if m is a prime larger than three, then there are only two
possibilities as the corollary below shows.

Corollary 4.6. Let p > 3 be a prime number. If P ∈ Dp is a point such that
ψp (P ) = OC , then the ramification index of ψp at P is either p or 2p.

We need a restriction on the order of certain elements in SL2 (Fp). After the
following lemma we will prove the corollary.

Lemma 4.7. Let p ∈ Z>2 be prime and A ∈ SL2 (Fp). If p| ord (A), then there
exists a Q ∈ SL2

(
Fp2
)

such that

A = Q−1

(
α 1
0 α

)
Q

where α = ±1. Moreover if α = 1, then ord (A) = p, else ord (A) = 2p.
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Proof. Let f ∈ Fp [X] be the characteristic polynomial of A, that is f (X) =
det (A−XI). If f is irreducible, then f splits over a degree two extension of Fp
since f has degree two, however any such extension of Fp is isomorphic to Fp2 .
Thus f certainly splits over Fp2 . Hence there exists a Q ∈M2×2

(
Fp2
)

such that
QAQ−1 is in the Jordan canonical form. Suppose that

QAQ−1 =

(
α 0
0 β

)
with α, β ∈ Fp2 , then α 6= 0 and β = α−1 since det (A) = 1. So ord (A) divides∣∣∣F∗p2∣∣∣ = p2 − 1. Therefore also p|p2 − 1, which is impossible. Hence

QAQ−1 =

(
α 1
0 α

)
with α ∈ Fp2 . In fact α = ±1, because α2 = 1.

The order of A follows immediately from(
α 1
0 α

)n
=

(
αn nαn−1

0 αn

)
for all n ∈ Z≥0 and nαn−1 = 0 only if p|n.

Proof of corollary 4.6. Denote the ramification index at P by n. Now

Z/nZ ∼= Gal
(
L̂p,P /K̂OC

)
∼= {σ ∈ Gal (Lp/K) : σ (P ) = P} ⊂ Gal (Lp/K) ,

where the first isomorphism follows from corollary 3.9 and the second isomor-
phism follows from proposition 3.19 and proposition 3.21. Since Z/nZ contains
an element of order n, then Gal (Lp/K) also contains an element of order n,
say σ. There exists an injective homomorphism ρp : Gal (Lp/K)→ SL2 (Fp) by
proposition 3.22. So ρp (σ) ∈ SL2 (Fp) also has order n. Proposition 4.5 implies
that p divides n. From lemma 4.7 follows that ρp (σ) has order either p or 2p.
Therefore either n = p or n = 2p.

From now on we assume that k is the field of complex number C. Moreover
we focus on the curves Dm with m a prime number larger than three. These
restrictions allow us to compute the Galois group of the extension Lp of K.

Proposition 4.8. Let E be an elliptic curve defined over C (t). If j (E) = t,
then Gal (C (t, E [n]) /C (t))→ SL2 (Z/nZ) is an isomorphism.

Proof. See [9, theorem 1].

We extend this proposition to our situation.

Corollary 4.9. If p ∈ Z>3 is prime, then the map ρp : Gal (Lp/K)→ SL2 (Fp)
is an isomorphism.

The lemma below is necessary to derive the corollary. It is a result on normal
subgroups of SL2 (k) with k a field containing more than three elements.

Lemma 4.10. Let k be a field such that |k| > 3. If N is a normal subgroup of
SL2 (k), then either N = SL2 (k) or [SL2 (k) : N ] ≥ 60.
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Proof. Denote SL2 (k) by G. The canonical homomorphism π : G → G/N is
well-defined, because N is normal. The group G is perfect, that is G = [G,G].

Assume that N is proper and [G : N ] < 60, then G/N is a non-trivial group
of order less than 60. Any such group is solvable, thus there exists a proper
normal subgroup M of G/N such that (G/N) /M is abelian. Denote latter
group by H and the canonical homomorphism by ρ : G/N → H. In particular
ρ ◦ π : G→ H is a surjective homomorphism into an abelian group. It induces
a surjective homomorphism G/ [G,G]→ H. However G/ [G,G] is trivial and H
is non-trivial, so that the map can not be surjective.

Hence N = G or [G : N ] ≥ 60.

Proof of corollary 4.9. Define E′ : y2 = x3 − 27t
t−1728x −

54t
t−1728 to be an elliptic

curve over C (t). It has discriminant

∆ (E′) = −1728
4 · 273t2

(t− 1728)
3

and invariant j (E′) = t. Choose t = 1728 · 4a3 with a ∈ K = C (C), then the

equation for E′ becomes y2 = x3+4a
3

b2 +8a
3

b2 . The curves E and E′ have the same
j-invariant. They are isomorphic over C (a, b, c) with c2 = 2ab , because they are
related by the change of coordinates E → E′ defined as (x, y) 7→

(
c2x, c3y

)
. In

particular this gives an bijection between E [p] and E′ [p]. Therefore

C (a, b, c, E [p]) = C (a, b, c, E′ [p]) .

Consider the following diagram of Galois extensions

C (t, E′ [p])

??�����

C (a,E′ [p])

??�����

C (a, b, E′ [p])

??�����

C (a, b, c, E [p])

C (t)
G1

__????? Z/3Z

??�����

C (a)
G2

__????? Z/2Z

??�����

C (a, b)
G3

__????? G4

??�����

C (a, b, E [p])

__?????

where Gi are the Galois for i = 1, 2, 3, 4. The homomorphism Gi → SL2 (Fp)
is injective for each i by proposition 3.22, since C contains all roots of unity.
So Gi may be considered as a subgroup of SL2 (Fp). Moreover G1 = SL2 (Fp)
by proposition 4.8. The extension C (a,E′ [p]) of C (t, E′ [p]) has degree either
one or three. Suppose that it has degree one, then Gal (C (a,E′ [p]) /C (a)) =
SL2 (Fp) and G2 is a normal subgroup of index three, which does not exists
by lemma 4.10. Thus G2 = SL2 (Fp). By the same argument G3 = SL2 (Fp).
Notice that |G4| ≤ |G3|. Assume that |G4| < |G3|, then

[C (a, b, c, E [p]) : C (a, b, E′ [p])] < [C (a, b, c, E [p]) : C (a, b, E [p])]
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by the tower law and the degree of the extension on the right is at most two,
so that C (a, b, c, E [p]) = C (a, b, E′ [p]) and G4 a normal subgroup of index at
most two, however such a subgroup does not exists by lemma 4.10. Therefore
also G4 = SL2 (Fp). Recall that Lp = K (E [p]) and K = C (a, b). Hence
Gal (Lp/K) = SL2 (Fp).

The Galois group of the extension Lp of K is now known. This information
tells us how many points on Dp lie above a particular point on C.

Proposition 4.11. Let p ∈ Z>3 be prime and Q ∈ C be a point. If Q = OC ,
then the inverse image of OC under ψp contains either p2−1 or 1

2

(
p2 − 1

)
points

depending on whether the ramification index above OC is p or 2p, otherwise the
inverse image of Q under ψp contains (p− 1) p (p+ 1) points.

We need the size of the Galois group. It is calculated in the following lemma.

Lemma 4.12. Let p ∈ Z be prime. Then |SL2 (Fp)| = (p− 1) p (p+ 1).

Proof. Consider the following matrix in SL2 (Fp)(
a b
c d

)
that is a, b, c, d ∈ Fp such that ad− bc = 1.

Suppose that ad = 0, then either both a and d are zero or one of both is zero
and the other is non-zero. There are 1 + 2 (p− 1) = 2p − 1 such combinations
of a and d. In this case bc = −1, that is p − 1 combinations of b and c. Hence
there are (p− 1) (2p− 1) matrices with ad = 0. A similar argument shows that
there are also (p− 1) (2p− 1) matrices with ad = 1.

Assume that ad 6= 0, 1, then bc = ad − 1 6= 0,−1. In this case there are
(p− 1) (p− 2) combinations of a and d, and (p− 1) combinations of b and c.

Hence there are (p− 2) (p− 1)
2

matrices of this form.
Therefore there are

2 (p− 1) (2p− 1) + (p− 2) (p− 1)
2

= (p− 1) p (p+ 1)

matrices in SL2 (Fp).

Proof of proposition 4.11. Let P ∈ Dp be any point. Define Q = ψp (P ). If n is
the number of points above Q, then

neψp (P ) = [Lp : K] = |Gal (Lp/K)| = |SL2 (Fp)| = (p− 1) p (p+ 1)

where the equalities follow from propositions 3.16 and 3.21, corollary 4.9 and
lemma 4.12 respectively. If Q 6= OC , then eψp (P ) = 1 by proposition 4.2,
otherwise eψp (P ) is either p or 2p by corollary 4.6. This completes the proof.

Corollary 4.13. Let p ∈ Z>3 be prime. If the ramification index of ψp above
OC is p, then the genus of Dp is

gDp =
1

2

(
p2 − 1

)
(p− 1) + 1,

otherwise the genus of Dp is

gDp =
1

4

(
p2 − 1

)
(2p− 1) + 1.

Proof. The genus follows immediately from proposition 3.18.
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4.2 Adjoin the x coordinates for all points

Let m ∈ Z≥2 and Lm,x = K (E [m]x). Denote the curve over k corresponding
to Lm,x by Dm,x. Write the surjective morphism induced by the inclusion of K
into Lm,x as ψm,x : Dm,x → C. Proposition 3.21 implies that Lm,x is a Galois
extension of K. We assume that k is the field of complex numbers C and that
p a prime number larger than three.

Proposition 4.14. Let P ∈ Dp,x be any point. If ψp,x (P ) = OC , then ψp,x is
ramified at P with ramification index p, otherwise ψp,x is unramified at P .

We will prove this proposition after the next two lemmas. The first lemma
relates the Galois group of the extension Lp of Lp,x to a subgroup of SL2 (Fp).
The second lemma restricts the order of certain elements in PSL2 (Fp).

Lemma 4.15. The subgroup Gal (Lp/Lp,x) of Gal (Lp/K) corresponds to the
subgroup {I,−I} of SL2 (Fp) via the isomorphism ρp : Gal (Lp/K)→ SL2 (Fp).

Proof. There exists a σ ∈ Gal (Lp/K) such that ρp (σ) = −I. Let P ∈ E [p]−O
be any point. In this case P = (x, y). Then

(σ (x) , σ (y)) = ρ (σ) (P ) = −P = (x,−y) .

Thus σ (x) = x. So σ ∈ Gal (Lp/Lp,x), because the x-coordinate of any point P
is fixed by σ. Hence ρn (Gal (Lp/Lp,x)) ⊃ {I,−I}.

Let P ∈ E [p] be the first point of the ordered basis used for the represen-
tation of SL2 (Fp). Take any automorphism σ ∈ Gal (Lp/Lp,x). Since P 6= O,
then P = (x, y). Moreover y2 = x3 + ax+ b. So

σ (y)
2

= σ
(
x3 + ax+ b

)
= σ (x)

3
+ aσ (x) + b = x3 + ax+ b = y2.

Therefore σ (y) = ±y. By definition σ (x) = x. Hence

ρp (σ) =

(
±1 β
0 α

)
where α, β ∈ Fp some constants. In fact α = ±1 and β = 0, because the
determinant is one and σ has order two. Therefore ρn (σ) = ±I. Hence also
ρn (Gal (Lp/Lp,x)) ⊂ {I,−I}.

Lemma 4.16. Let A ∈ PSL2 (Fp). If p| ord (A), then ord (A) = p.

Proof. Let φ : SL2 (Fp) → PSL2 (Fp) be the canonical homomorphism. There
exists an element B ∈ SL2 (Fp) such that φ (B) = A. Let n = ord (A). Since
φ (Bn) = An = I, then either Bn = I or Bn = −I. Hence ord (B) = n or
ord (B) = 2n. In fact either ord (B) = p or ord (B) = 2p, because p divides
ord (B) and lemma 4.7. Moreover if ord (B) = 2p, then Bp = −I. Therefore
I = φ (Bp) = Ap. Hence ord (A) = p.

Proof of proposition 4.14. Denote the surjective morphism corresponding to the
inclusion of Lp,x into Lp by χ : Dp → Dp,x. Let Q ∈ Dp be a point such that
χ (Q) = P . Notice that ψp = ψp,x ◦ χ. So

eψp (Q) = eψp,x (P ) eχ (Q)
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by proposition 3.17.
Assume that ψp,x (P ) 6= OC , then ψp (Q) 6= OC . From proposition 4.2

follows that ψp is unramified at Q, that is, eψp (Q) = 1. Thus eψp,x (P ) = 1.
Suppose that ψp,x (P ) = OC , then ψp (Q) = OC . Moreover eψp (Q) is either

p or 2p by corollary 4.6. Notice that p does not divide eχ (Q), because

eχ (Q) ≤ [Lp : Lp,x] = |Gal (Lp/Lp,x)| = 2

by proposition 3.16 and lemma 4.15. Thus p divides eψp,x (P ). Let n = eψp,x (P ).

Z/nZ ∼= Gal
(
L̂p,x,P /K̂OC

)
∼= {σ ∈ Gal (Lp,x/K) : σ (P ) = P} ⊂ Gal (Lp,x/K) ,

where the first isomorphism follows from corollary 3.9 and the second isomor-
phism follows from proposition 3.19 and proposition 3.21. Since the group
Z/nZ contains an element of order n and lemma 4.15 gives an isomorphism
Gal (Lp,x/K) → PSL2 (Fp), then PSL2 (Fp) contains an element of order n.
Moreover p divides n. Therefore lemma 4.16 implies that the order is p, that is
n = p. Hence the ramification index of ψp,x at P is p.

We now have enough information to determine the number of points on Dp,x

above a particular point on C. This allows us compute the genus of Dp,x.

Corollary 4.17. Let Q ∈ C be any point. If Q = OC , then the inverse image
of Q under ψp,x contains 1

2

(
p2 − 1

)
points, otherwise the inverse image of Q

under ψp,x contains 1
2 (p− 1) p (p+ 1) points.

Proof. The proof is analogous to the proof of proposition 4.11.

Corollary 4.18. The genus of Dp,x is

gDp,x =
1

4

(
p2 − 1

)
(p− 1) + 1.

Proof. The genus follows immediately from proposition 3.18.

4.3 Adjoin the x coordinate for a single point

Let m ∈ Z≥2 and P ∈ E [m] be a point of order m. Write the x-coordinate of
P as xP . Adjoin this coordinate to K, that is define Lm,P = K (xP ). Denote
the curve over k corresponding to Lm,P by Dm,P and the morphism induced by
the inclusion of K into Lm,P by ψm,P : Dm,P → C. Again we assume that k is
the field of complex numbers C and that p a prime number larger than three.

Proposition 4.19. If R ∈ Dp,P is a point such that ψp,P (R) 6= OC , then ψp,P
is unramified at R. The ramification index is p for some R ∈ Dp,P such that
ψp,P (R) = OC .

Proof. Let Q ∈ E [p] be another point of order p such that {P,Q} forms an
ordered basis for the representation of SL2 (Fp). Write xQ for the x-coordinate
of Q. Since K (xP , xQ) ⊂ Lp,x, then

Gal (Lp/Lp,x) ⊂ Gal (Lp/K (xP , xQ)) .
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Let σ ∈ Gal (Lp/K (xP , xQ)) be any automorphism. The points P and Q are
chosen such that ρp (σ) (P ) = ±P and ρp (σ) (Q) = ±Q, that is ρp (σ) = ±I.
Therefore also σ ∈ Gal (Lp/Lp,x) by lemma 4.15. Hence Lp,x = K (xP , xQ).

Let Lp,Q = K (xQ). Denote the curve with function field Lp,Q by Dp,Q. The
inclusion of K into Lp,Q gives a surjective morphism ψp,Q : Dp,Q → C. There
exists an element τ ∈ Gal (Lp/K) such that

ρp (τ) =

(
0 −1
1 0

)
,

that is ρp (τ) (P ) = Q and ρp (τ) (Q) = −P . In particular τ (xQ) = xP . Thus
τ restricts to an isomorphism from Lp,Q to Lp,P that fixes K. Denote the sur-
jective morphism corresponding to τ by λ : Dp,P → Dp,Q. From corollary 3.12
follows that ψp,P = ψp,Q ◦ λ. For any point R ∈ Dp,P proposition 3.17 gives

eψp,P (R) = eψp,Q (λ (R)) eλ (R) .

In fact eλ (R) = 1, because λ is an isomorphism. Hence the ramification index
of ψp,P at R is the same as the ramification index of ψp,Q at λ (R).

Assume that ψp,P is unramified above OC , then ψp,Q is also unramified above
OC . Let χP : Dp,x → Dp,P and χQ : Dp,x → Dp,Q be the surjective morphisms
corresponding to the inclusion of Lp,P and Lp,Q into Lp,x respectively. Take a
point R ∈ Dp,x such that ψp,x (R) = OC . Consider the completions of Lp,x,

Lp,P , Lp,Q and K at R, χP (R), χQ (R) and OC respectively. Now L̂p,P,χP (R) =

K̂OC = L̂p,Q,χQ(R), because the ψp,P and ψp,Q are unramified and corollary 3.9.

Therefore Lp,x = K (xP , xQ) implies that L̂p,x,R = K̂OC , which contradicts that
the ramification index of ψp,x at R is p by proposition 4.14. Hence there exists
a point S ∈ Dp,P such that ψp,P (S) = OC and ψp,P is ramified at S. Let
R ∈ Dp,x be a point such that χP (R) = S, then

eψp,x (R) = eψp,P (S) eχP (R) .

by proposition 3.17 combined with eψp,x (R) = p prime and eψp,P (S) > 1 gives
that eψp,P (S) = p.

Let S ∈ Dp,P be a point such that ψp,P (S) 6= OC . There exists a point
R ∈ Dp,x such that χP (R) = S. The morphism ψp,x is unramified at R by
proposition 4.14. Hence ψp,P is also unramified at S by proposition 3.17.

We see that Dp,P is also a branched covering space of the elliptic curve C
that branches only above OC .
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Chapter 5

Discussion and conclusions

First we considered an elliptic curve as a Riemann surface of genus one, that
is a torus. We mentioned that connected covering spaces of a torus correspond
to subgroups of Z× Z. In theorem 2.25 we proved that there exists a branched
covering space of a torus with a single branch point. We improved this result in
proposition 2.26, where we showed that there exists a branched covering space
of a torus with one branch point and three sheets. It turns out that three sheets
is the minimum.

The proof of theorem 2.25 involved a covering space of the punctured torus
with a non-abelian group of deck transformations. Since this group is abelian for
all covering spaces of the torus, then the analytic continuation of that particular
covering space to a branched covering space of a torus can not be a covering
space. We wonder under which conditions the reverse statement is true. Is the
analytic continuation of a covering space of the punctured torus with an abelian
group of deck transformations again a covering space of the torus?

In section 3.5 we constructed a branched covering space of a particular ellip-
tic curve that only branches above the at infinity point and derived the equations
for that curve and covering map. Proposition 3.47 is the algebraic analogue of
proposition 2.26.

We have constructed a family of branched covering spaces of the elliptic
curve C : 4a3 + 27b2 = 1 over an algebraically closed field k of characteristic
zero. In particular if we take k to be the complex numbers, then we can describe
ramification index, the number of points above a point on C and the genus of
that branched covering spaces rather well. For example see proposition 4.14 and
corollaries 4.17 and 4.18.

The family of branched covering spaces of C also raises a few questions. For
example we can ask if proposition 4.8 is also true for other algebraically closed
fields of characteristic zero. If this is the case, then our results also hold for that
field. We may also ask the following important question. Does the construction
in chapter 4 also work for other elliptic curves?

In this master’s thesis we encountered a surprising amount of theory. From
covering spaces and analytic continuations thereof in chapter 2 to the completion
of discrete valuation rings and the Tate curve in chapters 3 and 4.

49
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